IPMix: Label-Preserving Data Augmentation Method for Training Robust
Classifiers
- URL: http://arxiv.org/abs/2310.04780v7
- Date: Wed, 13 Mar 2024 13:39:47 GMT
- Title: IPMix: Label-Preserving Data Augmentation Method for Training Robust
Classifiers
- Authors: Zhenglin Huang, Xiaoan Bao, Na Zhang, Qingqi Zhang, Xiaomei Tu, Biao
Wu, Xi Yang
- Abstract summary: We propose IPMix, a simple data augmentation approach to improve robustness without hurting clean accuracy.
IPMix integrates three levels of data augmentation into a coherent and label-preserving technique to increase the diversity of training data.
Experiments demonstrate that IPMix outperforms state-of-the-art corruption robustness on CIFAR-C and ImageNet-C.
- Score: 4.002089584222719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation has been proven effective for training high-accuracy
convolutional neural network classifiers by preventing overfitting. However,
building deep neural networks in real-world scenarios requires not only high
accuracy on clean data but also robustness when data distributions shift. While
prior methods have proposed that there is a trade-off between accuracy and
robustness, we propose IPMix, a simple data augmentation approach to improve
robustness without hurting clean accuracy. IPMix integrates three levels of
data augmentation (image-level, patch-level, and pixel-level) into a coherent
and label-preserving technique to increase the diversity of training data with
limited computational overhead. To further improve the robustness, IPMix
introduces structural complexity at different levels to generate more diverse
images and adopts the random mixing method for multi-scale information fusion.
Experiments demonstrate that IPMix outperforms state-of-the-art corruption
robustness on CIFAR-C and ImageNet-C. In addition, we show that IPMix also
significantly improves the other safety measures, including robustness to
adversarial perturbations, calibration, prediction consistency, and anomaly
detection, achieving state-of-the-art or comparable results on several
benchmarks, including ImageNet-R, ImageNet-A, and ImageNet-O.
Related papers
- Adaptive Mix for Semi-Supervised Medical Image Segmentation [22.69909762038458]
We propose an Adaptive Mix algorithm (AdaMix) for image mix-up in a self-paced learning manner.
We develop three frameworks with our AdaMix, i.e., AdaMix-ST, AdaMix-MT, and AdaMix-CT, for semi-supervised medical image segmentation.
arXiv Detail & Related papers (2024-07-31T13:19:39Z) - RC-Mixup: A Data Augmentation Strategy against Noisy Data for Regression Tasks [27.247270530020664]
We study the problem of robust data augmentation for regression tasks in the presence of noisy data.
C-Mixup is more selective in which samples to mix based on their label distances for better regression performance.
We propose RC-Mixup, which tightly integrates C-Mixup with multi-round robust training methods for a synergistic effect.
arXiv Detail & Related papers (2024-05-28T08:02:42Z) - GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps [6.396288020763144]
We propose GuidedMixup, which aims to retain the salient regions in mixup images with low computational overhead.
We develop an efficient pairing algorithm that pursues to minimize the conflict of salient regions of paired images.
Experiments on several datasets demonstrate that GuidedMixup provides a good trade-off between augmentation overhead and generalization performance.
arXiv Detail & Related papers (2023-06-29T00:55:51Z) - AugRmixAT: A Data Processing and Training Method for Improving Multiple
Robustness and Generalization Performance [10.245536402327096]
Much previous work has been proposed to improve specific robustness of deep neural network models.
In this paper, we propose a new data processing and training method, called AugRmixAT, which can simultaneously improve the generalization ability and multiple robustness of neural network models.
arXiv Detail & Related papers (2022-07-21T04:02:24Z) - NoisyMix: Boosting Robustness by Combining Data Augmentations, Stability
Training, and Noise Injections [46.745755900939216]
We introduce NoisyMix, a training scheme that combines data augmentations with stability training and noise injections to improve both model robustness and in-domain accuracy.
We demonstrate the benefits of NoisyMix on a range of benchmark datasets, including ImageNet-C, ImageNet-R, and ImageNet-P.
arXiv Detail & Related papers (2022-02-02T19:53:35Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - ReMix: Towards Image-to-Image Translation with Limited Data [154.71724970593036]
We propose a data augmentation method (ReMix) to tackle this issue.
We interpolate training samples at the feature level and propose a novel content loss based on the perceptual relations among samples.
The proposed approach effectively reduces the ambiguity of generation and renders content-preserving results.
arXiv Detail & Related papers (2021-03-31T06:24:10Z) - Guided Interpolation for Adversarial Training [73.91493448651306]
As training progresses, the training data becomes less and less attackable, undermining the robustness enhancement.
We propose the guided framework (GIF), which employs the previous epoch's meta information to guide the data's adversarial variants.
Compared with the vanilla mixup, the GIF can provide a higher ratio of attackable data, which is beneficial to the robustness enhancement.
arXiv Detail & Related papers (2021-02-15T03:55:08Z) - ResizeMix: Mixing Data with Preserved Object Information and True Labels [57.00554495298033]
We study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance.
We propose a more effective but very easily implemented method, namely ResizeMix.
arXiv Detail & Related papers (2020-12-21T03:43:13Z) - Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks [75.69896269357005]
Mixup is the latest data augmentation technique that linearly interpolates input examples and the corresponding labels.
In this paper, we explore how to apply mixup to natural language processing tasks.
We incorporate mixup to transformer-based pre-trained architecture, named "mixup-transformer", for a wide range of NLP tasks.
arXiv Detail & Related papers (2020-10-05T23:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.