ReMix: Towards Image-to-Image Translation with Limited Data
- URL: http://arxiv.org/abs/2103.16835v1
- Date: Wed, 31 Mar 2021 06:24:10 GMT
- Title: ReMix: Towards Image-to-Image Translation with Limited Data
- Authors: Jie Cao, Luanxuan Hou, Ming-Hsuan Yang, Ran He, Zhenan Sun
- Abstract summary: We propose a data augmentation method (ReMix) to tackle this issue.
We interpolate training samples at the feature level and propose a novel content loss based on the perceptual relations among samples.
The proposed approach effectively reduces the ambiguity of generation and renders content-preserving results.
- Score: 154.71724970593036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-to-image (I2I) translation methods based on generative adversarial
networks (GANs) typically suffer from overfitting when limited training data is
available. In this work, we propose a data augmentation method (ReMix) to
tackle this issue. We interpolate training samples at the feature level and
propose a novel content loss based on the perceptual relations among samples.
The generator learns to translate the in-between samples rather than memorizing
the training set, and thereby forces the discriminator to generalize. The
proposed approach effectively reduces the ambiguity of generation and renders
content-preserving results. The ReMix method can be easily incorporated into
existing GAN models with minor modifications. Experimental results on numerous
tasks demonstrate that GAN models equipped with the ReMix method achieve
significant improvements.
Related papers
- SUMix: Mixup with Semantic and Uncertain Information [41.99721365685618]
Mixup data augmentation approaches have been applied for various tasks of deep learning.
We propose a novel approach named SUMix to learn the mixing ratio as well as the uncertainty for the mixed samples during the training process.
arXiv Detail & Related papers (2024-07-10T16:25:26Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
We introduce DMD2, a set of techniques that lift this limitation and improve DMD training.
First, we eliminate the regression loss and the need for expensive dataset construction.
Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images.
arXiv Detail & Related papers (2024-05-23T17:59:49Z) - A Recycling Training Strategy for Medical Image Segmentation with
Diffusion Denoising Models [8.649603931882227]
Denoising diffusion models have found applications in image segmentation by generating segmented masks conditioned on images.
In this work, we focus on improving the training strategy and propose a novel recycling method.
We show that, under a fair comparison with the same network architectures and computing budget, the proposed recycling-based diffusion models achieved on-par performance with non-diffusion-based supervised training.
arXiv Detail & Related papers (2023-08-30T23:03:49Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Improving GAN Training via Feature Space Shrinkage [69.98365478398593]
We propose AdaptiveMix, which shrinks regions of training data in the image representation space of the discriminator.
Considering it is intractable to directly bound feature space, we propose to construct hard samples and narrow down the feature distance between hard and easy samples.
The evaluation results demonstrate that our AdaptiveMix can facilitate the training of GANs and effectively improve the image quality of generated samples.
arXiv Detail & Related papers (2023-03-02T20:22:24Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated
Label Mixing [104.630875328668]
Mixup scheme suggests mixing a pair of samples to create an augmented training sample.
We present a novel, yet simple Mixup-variant that captures the best of both worlds.
arXiv Detail & Related papers (2021-12-16T11:27:48Z) - An Empirical Study of the Effects of Sample-Mixing Methods for Efficient
Training of Generative Adversarial Networks [0.0]
It is well-known that training of generative adversarial networks (GANs) requires huge iterations before the generator's providing good-quality samples.
We investigated the effect of sample mixing methods, that is, Mixup, CutMix, and SRMix, to alleviate this problem.
arXiv Detail & Related papers (2021-04-08T06:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.