論文の概要: Cyber Insurance Risk: Reporting Delays, Third-Party Cyber Events, and Changes in Reporting Propensity -- An Analysis Using Data Breaches Published by U.S. State Attorneys General
- arxiv url: http://arxiv.org/abs/2310.04786v1
- Date: Sat, 7 Oct 2023 12:17:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 03:02:24.780404
- Title: Cyber Insurance Risk: Reporting Delays, Third-Party Cyber Events, and Changes in Reporting Propensity -- An Analysis Using Data Breaches Published by U.S. State Attorneys General
- Title(参考訳): サイバー保険のリスク:報告の遅れ、第三者のサイバーイベント、報告の機会の変化-米司法長官が公表したデータ分析
- Authors: Benjamin Avanzi, Xingyun Tan, Greg Taylor, Bernard Wong,
- Abstract要約: サイバー保険のリスクに関する研究は、これまでのところデータ不足によって妨げられている。
i)報告の遅れ、(ii)第三者イベントの影響を受けるすべてのビジネス、(iii)報告の適切性の変化に関する情報が不足している。
この重要なギャップを、アメリカ合衆国司法長官が提供した、未認識の公開データを活用することで埋める。
- 参考スコア(独自算出の注目度): 0.8142555609235358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of cyber threats, cyber insurance is becoming an important consideration for businesses. However, research on cyber insurance risk has so far been hindered by the general lack of data, as well as limitations underlying what limited data are available publicly. Specifically and of particular importance to cyber insurance modelling, limitations arising from lack of information regarding (i) delays in reporting, (ii) all businesses affected by third-party events, and (iii) changes in reporting propensity. In this paper, we fill this important gap by utilising an underrecognised set of public data provided by U.S. state Attorneys General, and provide new insights on the true scale of cyber insurance risk. These data are collected based on mandatory reporting requirements of data breaches, and contain substantial and detailed information. We further discuss extensively the associated implications of our findings for cyber insurance pricing, reserving, underwriting, and experience monitoring.
- Abstract(参考訳): サイバー脅威の高まりにより、サイバー保険は企業にとって重要な考慮事項になりつつある。
しかし、サイバー保険のリスクに関する研究は、データの全般的な欠如と、データ公開の制限の根底にある制限によって、これまで妨げられてきた。
具体的には、サイバー保険のモデリングにおいて特に重要であり、情報不足による制限
一 報告の遅れ
(二 第三者イベントの影響を受けるすべての事業
三 報告の妥当性の変更
本稿では,米国司法長官が提供した未認識の公開データを活用することで,この重要なギャップを埋めるとともに,サイバー保険の真の規模に関する新たな洞察を提供する。
これらのデータは、データ漏洩の必須報告要件に基づいて収集され、実質的で詳細な情報を含んでいる。
さらに、サイバー保険の価格、保留、引受け、および経験モニタリングに関する我々の研究結果の関連性についても広く論じる。
関連論文リスト
- Enhancing Crash Frequency Modeling Based on Augmented Multi-Type Data by Hybrid VAE-Diffusion-Based Generative Neural Networks [13.402051372401822]
衝突頻度モデリングにおける重要な課題は、過剰なゼロ観測の頻度である。
我々は、ゼロ観測を減らすために、ハイブリッドなVAE拡散ニューラルネットワークを提案する。
我々は、類似性、正確性、多様性、構造的整合性といった指標を用いて、このモデルによって生成された合成データ品質を評価する。
論文 参考訳(メタデータ) (2025-01-17T07:53:27Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Towards a Novel Perspective on Adversarial Examples Driven by Frequency [7.846634028066389]
異なる周波数帯域を組み合わせたブラックボックス逆攻撃アルゴリズムを提案する。
複数のデータセットとモデルで実施された実験により、低周波帯域と低周波帯域の高周波成分を組み合わせることで、攻撃効率が著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-16T00:58:46Z) - Imbalanced Aircraft Data Anomaly Detection [103.01418862972564]
航空シナリオ下でのセンサーからの時間データの異常検出は実用的だが難しい課題である。
本稿では,グラフィカル・テンポラル・データ分析フレームワークを提案する。
シリーズ・トゥ・イメージ (S2I) と呼ばれる3つのモジュール、ユークリッド距離 (CRD) を用いたクラスタ・ベース・リサンプリング・アプローチ、変数・ベース・ロス (VBL) から構成される。
論文 参考訳(メタデータ) (2023-05-17T09:37:07Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - Enabling Trade-offs in Privacy and Utility in Genomic Data Beacons and
Summary Statistics [26.99521354120141]
要約データやBeaconの応答とプライバシを明示的にトレードオフするための最適化ベースのアプローチを導入します。
第一に、攻撃者はメンバーシップ推論のクレームを行うために確率比テストを適用する。
第2に、攻撃者は、個人間のスコアの分離に対するデータリリースの影響を考慮に入れたしきい値を使用する。
論文 参考訳(メタデータ) (2023-01-11T19:16:13Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
理論的および経験的知見を参考に,周波数に基づく対向例の理解について述べる。
分析の結果,逆転例は高周波でも低周波成分でもないが,単にデータセット依存であることがわかった。
本稿では、一般に観測される精度対ロバスト性トレードオフの周波数に基づく説明法を提案する。
論文 参考訳(メタデータ) (2021-10-26T19:12:34Z) - A New Bandit Setting Balancing Information from State Evolution and
Corrupted Context [52.67844649650687]
本稿では,2つの確立されたオンライン学習問題と包括的フィードバックを組み合わせた,逐次的意思決定方式を提案する。
任意の瞬間にプレーする最適なアクションは、エージェントによって直接観察できない基礎となる変化状態に付随する。
本稿では,レフェリーを用いて,コンテキストブレイジットとマルチアームブレイジットのポリシーを動的に組み合わせるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-16T14:35:37Z) - Data-driven Identification of Number of Unreported Cases for COVID-19:
Bounds and Limitations [10.796851110372593]
正確な長期予測を妨げる重要な要因は、報告されていない/症状のないケースの数である。
報告された症例の要因として, 実例のこの比率の下位境界, 上限を同定できることが示唆された。
報告されていないケースの数を一定期間のみ確実に推定できることを実証する。
論文 参考訳(メタデータ) (2020-06-03T09:39:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。