論文の概要: Transferable Deep Clustering Model
- arxiv url: http://arxiv.org/abs/2310.04946v1
- Date: Sat, 7 Oct 2023 23:35:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 14:17:19.706839
- Title: Transferable Deep Clustering Model
- Title(参考訳): 転送可能な深層クラスタリングモデル
- Authors: Zheng Zhang, Liang Zhao
- Abstract要約: 本稿では,データサンプルの分布に応じてクラスタセントロイドを自動的に適応できる,転送可能な新しいディープクラスタリングモデルを提案する。
提案手法では, 試料との関係を計測することで, センチロイドを適応できる新しい注意型モジュールを提案する。
合成および実世界の両方のデータセットに対する実験結果から,提案した移動学習フレームワークの有効性と有効性を示す。
- 参考スコア(独自算出の注目度): 14.073783373395196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has shown remarkable success in the field of clustering
recently. However, how to transfer a trained clustering model on a source
domain to a target domain by leveraging the acquired knowledge to guide the
clustering process remains challenging. Existing deep clustering methods often
lack generalizability to new domains because they typically learn a group of
fixed cluster centroids, which may not be optimal for the new domain
distributions. In this paper, we propose a novel transferable deep clustering
model that can automatically adapt the cluster centroids according to the
distribution of data samples. Rather than learning a fixed set of centroids,
our approach introduces a novel attention-based module that can adapt the
centroids by measuring their relationship with samples. In addition, we
theoretically show that our model is strictly more powerful than some classical
clustering algorithms such as k-means or Gaussian Mixture Model (GMM).
Experimental results on both synthetic and real-world datasets demonstrate the
effectiveness and efficiency of our proposed transfer learning framework, which
significantly improves the performance on target domain and reduces the
computational cost.
- Abstract(参考訳): ディープラーニングは最近、クラスタリングの分野で顕著な成功を収めた。
しかし、ソースドメイン上のトレーニング済みクラスタリングモデルを、取得した知識を活用してターゲットドメインに転送する方法は、依然として困難である。
既存のディープクラスタリング手法では、固定されたクラスタセンタロイドのグループを通常学習するため、新しいドメインへの一般化性が欠落することが多い。
本稿では,データサンプルの分布に応じてクラスタセントロイドを自動的に適応できる,転送可能な新しいディープクラスタリングモデルを提案する。
固定されたセントロイドの集合を学習するのではなく、サンプルとの関係を計測することでセントロイドを適応できる新しい注意ベースのモジュールを導入する。
さらに,k-means や gaussian mixed model (gmm) のような古典的クラスタリングアルゴリズムよりも厳密に強力なモデルであることが理論的に示されている。
合成および実世界のデータセットにおける実験結果は,提案するトランスファー学習フレームワークの有効性と効率を示し,対象領域の性能を大幅に改善し,計算コストを低減した。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3Sは、適応クラスタリングアルゴリズムによって得られる初期クラスタ結果に対して、戦略的にアクティブクラスタリングを調整する。
さまざまな実世界のデータセットにわたる広範な実験において、A3Sは、人間のクエリを著しく少なくして、望ましい結果を達成する。
論文 参考訳(メタデータ) (2024-07-14T13:37:03Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
クラスタリングは強力で広く使われているデータサイエンスツールです。
本稿では,予測クラスタリングのための一般化最適化フレームワークを定義する。
また,大域的最適化のためにMILP(mixed-integer linear programming)を利用する共同最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T19:56:51Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Self-Evolutionary Clustering [1.662966122370634]
既存のディープクラスタリング手法の多くは、単純な距離比較に基づいており、手作り非線形マッピングによって生成されたターゲット分布に大きく依存している。
新たなモジュール型自己進化クラスタリング(Self-EvoC)フレームワークが構築され,自己管理的な分類によってクラスタリング性能が向上する。
このフレームワークは、サンプルアウトレイラを効率よく識別し、自己監督の助けを借りて、より良い目標分布を生成することができる。
論文 参考訳(メタデータ) (2022-02-21T19:38:18Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
制約付きクラスタリングは、部分的にラベル付けされたデータの増加量に関する事前情報を利用することができる。
本稿では、直感的で解釈可能で、勾配変動推論の枠組みで効率的に訓練できる制約付きクラスタリングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T13:38:09Z) - Joint Optimization of an Autoencoder for Clustering and Embedding [22.16059261437617]
本稿では,自動エンコーダとクラスタリングを同時に学習する代替手法を提案する。
この単純なニューラルネットワークはクラスタリングモジュールと呼ばれ、ディープオートエンコーダに統合され、ディープクラスタリングモデルとなる。
論文 参考訳(メタデータ) (2020-12-07T14:38:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。