論文の概要: A3S: A General Active Clustering Method with Pairwise Constraints
- arxiv url: http://arxiv.org/abs/2407.10196v1
- Date: Sun, 14 Jul 2024 13:37:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:09:07.141961
- Title: A3S: A General Active Clustering Method with Pairwise Constraints
- Title(参考訳): A3S: Pairwise Constraintsを用いた汎用アクティブクラスタリング手法
- Authors: Xun Deng, Junlong Liu, Han Zhong, Fuli Feng, Chen Shen, Xiangnan He, Jieping Ye, Zheng Wang,
- Abstract要約: A3Sは、適応クラスタリングアルゴリズムによって得られる初期クラスタ結果に対して、戦略的にアクティブクラスタリングを調整する。
さまざまな実世界のデータセットにわたる広範な実験において、A3Sは、人間のクエリを著しく少なくして、望ましい結果を達成する。
- 参考スコア(独自算出の注目度): 66.74627463101837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active clustering aims to boost the clustering performance by integrating human-annotated pairwise constraints through strategic querying. Conventional approaches with semi-supervised clustering schemes encounter high query costs when applied to large datasets with numerous classes. To address these limitations, we propose a novel Adaptive Active Aggregation and Splitting (A3S) framework, falling within the cluster-adjustment scheme in active clustering. A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm. In particular, our cluster adjustment is inspired by the quantitative analysis of Normalized mutual information gain under the information theory framework and can provably improve the clustering quality. The proposed A3S framework significantly elevates the performance and scalability of active clustering. In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries compared with existing methods.
- Abstract(参考訳): アクティブクラスタリングは、戦略的クエリを通じて人間アノテーションによるペアワイズ制約を統合することにより、クラスタリングのパフォーマンスを向上させることを目的としている。
半教師付きクラスタリング方式による従来のアプローチは、多数のクラスを持つ大規模データセットに適用する場合、高いクエリコストに直面する。
これらの制約に対処するため、アクティブクラスタリングにおけるクラスタ調整スキームに該当する新しいAdaptive Active Aggregation and Splitting(A3S)フレームワークを提案する。
A3Sは、適応クラスタリングアルゴリズムによって得られる初期クラスタ結果に対して、戦略的にアクティブクラスタリングを調整する。
特に,我々のクラスタ調整は,情報理論の枠組みに基づく正規化相互情報ゲインの定量的解析にインスパイアされ,クラスタリングの品質を確実に向上させることができる。
提案されたA3Sフレームワークは、アクティブクラスタリングのパフォーマンスとスケーラビリティを大幅に向上させる。
さまざまな実世界のデータセットにわたる広範な実験において、A3Sは、既存の方法に比べてはるかに少ない人間のクエリで望ましい結果を達成する。
関連論文リスト
- AdaptiveMDL-GenClust: A Robust Clustering Framework Integrating Normalized Mutual Information and Evolutionary Algorithms [0.0]
我々は,最小記述長(MDL)原理と遺伝的最適化アルゴリズムを組み合わせたロバストクラスタリングフレームワークを提案する。
このフレームワークは、初期クラスタリングソリューションを生成するためのアンサンブルクラスタリングアプローチから始まり、MDL誘導評価関数を使用して洗練され、遺伝的アルゴリズムによって最適化される。
実験の結果,従来のクラスタリング手法を一貫して上回り,精度の向上,安定性の向上,バイアス低減を実現している。
論文 参考訳(メタデータ) (2024-11-26T20:26:14Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Mitigating shortage of labeled data using clustering-based active
learning with diversity exploration [3.312798619476657]
本稿ではクラスタリングに基づくアクティブラーニングフレームワーク,すなわちクラスタリングに基づくサンプリングを用いたアクティブラーニングを提案する。
重なり合うクラスを分類する学習性能を向上させるために、クラスタ境界に基づくサンプルクエリ手順が導入された。
論文 参考訳(メタデータ) (2022-07-06T20:53:28Z) - Clustering to the Fewest Clusters Under Intra-Cluster Dissimilarity
Constraints [0.0]
均等なクラスタリングは、密度も期待されるクラスの数にも依存せず、相似性の閾値にも依存します。
このクラスタリング問題に対する様々な実践的ソリューション間のトレードオフを特定するために,適切なクラスタリングアルゴリズムをレビューし,評価する。
論文 参考訳(メタデータ) (2021-09-28T12:02:18Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Dynamic Clustering in Federated Learning [15.37652170495055]
本稿では,生成型逆ネットワーク型クラスタリング,クラスタキャリブレーション,クラスタ分割という3相データクラスタリングアルゴリズムを提案する。
提案アルゴリズムは,セルラーネットワークハンドオーバを含む予測モデルの性能を43%向上させる。
論文 参考訳(メタデータ) (2020-12-07T15:30:07Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。