論文の概要: Information-Theoretic Bounds on The Removal of Attribute-Specific Bias
From Neural Networks
- arxiv url: http://arxiv.org/abs/2310.04955v2
- Date: Thu, 16 Nov 2023 17:57:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 22:20:02.087577
- Title: Information-Theoretic Bounds on The Removal of Attribute-Specific Bias
From Neural Networks
- Title(参考訳): ニューラルネットワークからの属性依存バイアス除去に関する情報理論的境界
- Authors: Jiazhi Li, Mahyar Khayatkhoei, Jiageng Zhu, Hanchen Xie, Mohamed E.
Hussein, Wael AbdAlmageed
- Abstract要約: 既存の属性バイアス除去法は,データセット固有のバイアスが比較的弱い場合にのみ有効であることを示す。
既存の属性バイアス除去法は,データセット固有のバイアスが比較的弱い場合にのみ有効であることがわかった。
- 参考スコア(独自算出の注目度): 20.7209867191915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring a neural network is not relying on protected attributes (e.g., race,
sex, age) for predictions is crucial in advancing fair and trustworthy AI.
While several promising methods for removing attribute bias in neural networks
have been proposed, their limitations remain under-explored. In this work, we
mathematically and empirically reveal an important limitation of attribute bias
removal methods in presence of strong bias. Specifically, we derive a general
non-vacuous information-theoretical upper bound on the performance of any
attribute bias removal method in terms of the bias strength. We provide
extensive experiments on synthetic, image, and census datasets to verify the
theoretical bound and its consequences in practice. Our findings show that
existing attribute bias removal methods are effective only when the inherent
bias in the dataset is relatively weak, thus cautioning against the use of
these methods in smaller datasets where strong attribute bias can occur, and
advocating the need for methods that can overcome this limitation.
- Abstract(参考訳): ニューラルネットワークの保証は、公正で信頼できるAIを進める上で、予測のために保護された属性(例えば、人種、性別、年齢)に依存していない。
ニューラルネットワークにおける属性バイアスを取り除くためのいくつかの有望な方法が提案されているが、その制限は未検討のままである。
本研究では,強いバイアスが存在する場合に,属性バイアス除去法の重要な限界を明らかにする。
具体的には, 属性バイアス除去法の性能を, バイアス強度の観点から, 一般の非空的情報理論上界を導出する。
我々は, 合成, 画像, および国勢調査のデータセットに関する広範な実験を行い, 理論的な境界とその実際の結果を検証する。
従来の属性バイアス除去法は,データセットの固有バイアスが比較的弱い場合にのみ有効であり,強い属性バイアスが発生する可能性のある小さなデータセットにおけるこれらの手法の使用に注意し,この制限を克服できる手法の必要性を主張する。
関連論文リスト
- Debiasify: Self-Distillation for Unsupervised Bias Mitigation [19.813054813868476]
単純性バイアスはニューラルネットワークにおいて重要な課題となり、しばしばモデルがより単純な解を好んで、急激な相関による決定規則を不注意に学習する。
バイアスの性質に関する事前の知識を必要としない新しい自己蒸留アプローチであるDebiasifyを紹介します。
提案手法は, 複雑で高精度な特徴を含む深い層から, より単純な特性条件を持つ浅層へと, ネットワーク内の知識を伝達するために, 新たな蒸留損失を生かしている。
論文 参考訳(メタデータ) (2024-11-01T16:25:05Z) - SABAF: Removing Strong Attribute Bias from Neural Networks with
Adversarial Filtering [20.7209867191915]
ニューラルネットワークにおける属性バイアスを除去する新しい手法を提案する。
提案手法は,強いバイアス設定と適度なバイアス設定の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-11-13T08:13:55Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Shielded Representations: Protecting Sensitive Attributes Through
Iterative Gradient-Based Projection [39.16319169760823]
イテレーティブ・グラディエント・ベース・プロジェクション(Iterative Gradient-Based Projection)は、非線形符号化された概念をニューラル表現から除去する新しい方法である。
以上の結果より, IGBPは内因性および外因性評価によるバイアス軽減に有効であることが示唆された。
論文 参考訳(メタデータ) (2023-05-17T13:26:57Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - Simon Says: Evaluating and Mitigating Bias in Pruned Neural Networks
with Knowledge Distillation [8.238238958749134]
プルーニングニューラルネットワークの評価と緩和に関する現在の文献には明確なギャップがある。
本稿では,CEV(Combined Error Variance)とSDE(Symmetric Distance Error)の2つの簡易かつ効果的な指標を提案する。
第二に、知識蒸留は、不均衡なデータセットであっても、刈り取られたニューラルネットワークにおける誘導バイアスを軽減することができることを実証する。
第3に、モデル類似性はプルーニング誘起バイアスと強い相関関係があることを明らかにし、なぜプルーニングニューラルネットワークでバイアスが発生するのかを説明する強力な方法を提供する。
論文 参考訳(メタデータ) (2021-06-15T02:59:32Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。