論文の概要: Transferable Availability Poisoning Attacks
- arxiv url: http://arxiv.org/abs/2310.05141v1
- Date: Sun, 8 Oct 2023 12:22:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 12:16:13.932068
- Title: Transferable Availability Poisoning Attacks
- Title(参考訳): 転送可能なアベイラビリティー中毒攻撃
- Authors: Yiyong Liu, Michael Backes, Xiao Zhang
- Abstract要約: 我々は、機械学習モデルの総合的なテスト精度を低下させることを目的とした、アベイラビリティーデータ中毒攻撃について検討する。
既存の毒殺対策は攻撃目標を達成することができるが、被害者は敵が攻撃をマウントするために使用するものと同じ学習方法を採用すると仮定する。
本稿では, 勾配情報を交互に活用し, 高周波中毒を発生させるTransferable Poisoningを提案する。
- 参考スコア(独自算出の注目度): 26.121144846352088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider availability data poisoning attacks, where an adversary aims to
degrade the overall test accuracy of a machine learning model by crafting small
perturbations to its training data. Existing poisoning strategies can achieve
the attack goal but assume the victim to employ the same learning method as
what the adversary uses to mount the attack. In this paper, we argue that this
assumption is strong, since the victim may choose any learning algorithm to
train the model as long as it can achieve some targeted performance on clean
data. Empirically, we observe a large decrease in the effectiveness of prior
poisoning attacks if the victim uses a different learning paradigm to train the
model and show marked differences in frequency-level characteristics between
perturbations generated with respect to different learners and attack methods.
To enhance the attack transferability, we propose Transferable Poisoning, which
generates high-frequency poisoning perturbations by alternately leveraging the
gradient information with two specific algorithms selected from supervised and
unsupervised contrastive learning paradigms. Through extensive experiments on
benchmark image datasets, we show that our transferable poisoning attack can
produce poisoned samples with significantly improved transferability, not only
applicable to the two learners used to devise the attack but also for learning
algorithms and even paradigms beyond.
- Abstract(参考訳): 機械学習モデルの総合的なテスト精度を低下させることを目的として,トレーニングデータに小さな摂動を施すことを目的とした,アベイラビリティデータ中毒攻撃を考える。
既存の毒殺戦略は攻撃目標を達成するが、被害者は敵が攻撃をマウントするために使用するものと同じ学習方法を採用すると仮定する。
本稿では,この仮定が強いことを論じる。これは,クリーンなデータに対する目標性能を達成できる限り,学習アルゴリズムを選択してモデルを訓練することができるためである。
実験では,モデル学習に異なる学習パラダイムを用い,異なる学習者と攻撃方法に対して発生した摂動の頻度レベル特性に有意な差がある場合,事前中毒攻撃の有効性が大幅に低下することを観察した。
攻撃伝達性を高めるために,教師付きおよび教師なしのコントラッシブ学習パラダイムから選択された2つの特定のアルゴリズムを用いて,勾配情報を交互に利用することにより,高周波中毒を発生させるTransferable Poisoningを提案する。
ベンチマーク画像データセットに関する広範囲な実験を通じて,我々のトランスファー可能な毒殺攻撃は,その攻撃を考案するために使用した2つの学習者だけでなく,学習アルゴリズムやそれ以上のパラダイムにも適用可能な,有毒なサンプルを生成できることを示した。
関連論文リスト
- Indiscriminate Data Poisoning Attacks on Pre-trained Feature Extractors [26.36344184385407]
本稿では,事前訓練した特徴抽出器を応用した下流タスクに対する無差別攻撃の脅威について検討する。
入力空間攻撃とは,(1)既存の攻撃を修正して入力空間に有毒なデータを作る攻撃と,(2)学習した特徴表現をデータセットとして扱うことで有毒な特徴を見つける攻撃である。
実験では、同じデータセット上の微調整やドメイン適応を考慮した転帰学習など、下流の一般的なタスクにおける攻撃について検討した。
論文 参考訳(メタデータ) (2024-02-20T01:12:59Z) - PACOL: Poisoning Attacks Against Continual Learners [1.569413950416037]
本研究では,悪意ある誤報によって連続学習システムを操作できることを実証する。
本稿では,連続学習者を対象としたデータ中毒攻撃の新たなカテゴリについて紹介する。
総合的な実験のセットは、一般的に使われている生成的リプレイと正規化に基づく攻撃方法に対する継続的な学習アプローチの脆弱性を示している。
論文 参考訳(メタデータ) (2023-11-18T00:20:57Z) - HINT: Healthy Influential-Noise based Training to Defend against Data
Poisoning Attacks [12.929357709840975]
本研究では,影響関数に基づくデータ中毒攻撃を効果的かつ堅牢に防ぐためのトレーニング手法を提案する。
影響関数を用いて、有害な攻撃に対する分類モデルを強化するのに役立つ健全なノイズを創出する。
実験の結果,HINTは非標的および標的の毒殺攻撃の効果に対して,ディープラーニングモデルを効果的に保護できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:12:19Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Amplifying Membership Exposure via Data Poisoning [18.799570863203858]
本稿では,データ中毒の第3タイプについて検討し,良心的トレーニングサンプルのプライバシー漏洩リスクを高めることを目的とした。
そこで本研究では,対象クラスの加入者への露出を増幅するために,データ中毒攻撃のセットを提案する。
この結果から,提案手法は,テスト時間モデルの性能劣化を最小限に抑えることで,メンバーシップ推定精度を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-01T13:52:25Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
我々は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを示します。
我々の研究は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを検証する。
論文 参考訳(メタデータ) (2021-06-18T08:29:53Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
インスタンスターゲット中毒攻撃におけるPAC学習性と認証について検討する。
敵の予算がサンプルの複雑さに比例してスケールすると、PACの学習性と認定が達成可能であることを示す。
実データセット上でのK近傍, ロジスティック回帰, 多層パーセプトロン, 畳み込みニューラルネットワークの堅牢性を実証的に検討する。
論文 参考訳(メタデータ) (2021-05-18T17:48:15Z) - Provable Defense Against Delusive Poisoning [64.69220849669948]
本研究は, 対人訓練が妄想性中毒に対する防御法であることを示す。
これは、敵の訓練が妄想的中毒に対する原則的な防御方法であることを意味している。
論文 参考訳(メタデータ) (2021-02-09T09:19:47Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Poisoning Attacks on Algorithmic Fairness [14.213638219685656]
本稿では,アルゴリズムの公正性に対する攻撃を害する最適化フレームワークを提案する。
我々は,データ中の異なるグループ間の分類格差の導入を目的とした,勾配に基づく中毒攻撃を開発した。
我々の発見は、異なるシナリオにおけるアルゴリズムフェアネスをターゲットとした、全く新しい敵攻撃セットの定義への道を開いたと信じている。
論文 参考訳(メタデータ) (2020-04-15T08:07:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。