An Investigation of LLMs' Inefficacy in Understanding Converse Relations
- URL: http://arxiv.org/abs/2310.05163v3
- Date: Mon, 13 Nov 2023 07:24:14 GMT
- Title: An Investigation of LLMs' Inefficacy in Understanding Converse Relations
- Authors: Chengwen Qi, Bowen Li, Binyuan Hui, Bailin Wang, Jinyang Li, Jinwang
Wu, Yuanjun Laili
- Abstract summary: We introduce a new benchmark ConvRe focusing on converse relations, which contains 17 relations and 1240 triples extracted from knowledge graph completion datasets.
Our ConvRE features two tasks, Re2Text and Text2Re, which are formulated as multi-choice question answering to evaluate LLMs' ability to determine the matching between relations and associated text.
- Score: 30.94718664430869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have achieved remarkable success in many formal
language oriented tasks, such as structural data-to-text and semantic parsing.
However current benchmarks mostly follow the data distribution of the
pre-training data of LLMs. Therefore, a natural question rises that do LLMs
really understand the structured semantics of formal languages. In this paper,
we investigate this problem on a special case, converse binary relation. We
introduce a new benchmark ConvRe focusing on converse relations, which contains
17 relations and 1240 triples extracted from popular knowledge graph completion
datasets. Our ConvRE features two tasks, Re2Text and Text2Re, which are
formulated as multi-choice question answering to evaluate LLMs' ability to
determine the matching between relations and associated text. For the
evaluation protocol, apart from different prompting methods, we further
introduce variants to the test text and few-shot example text. We conduct
experiments on three popular LLM families and have observed various scaling
trends. The results suggest that LLMs often resort to shortcut learning and
still face challenges on our proposed benchmark.
Related papers
- RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
This paper comprehensively evaluates Large Language Models (LLMs) on the Semantic Overlap Summarization (SOS) task.
We report well-established metrics like ROUGE, BERTscore, and SEM-F1$ on two different datasets of alternative narratives.
arXiv Detail & Related papers (2024-02-26T20:33:50Z) - Beware of Words: Evaluating the Lexical Diversity of Conversational LLMs using ChatGPT as Case Study [3.0059120458540383]
We consider the evaluation of the lexical richness of the text generated by conversational Large Language Models (LLMs) and how it depends on the model parameters.
The results show how lexical richness depends on the version of ChatGPT and some of its parameters, such as the presence penalty, or on the role assigned to the model.
arXiv Detail & Related papers (2024-02-11T13:41:17Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
Large language models (LLMs) have shown impressive in-context learning (ICL) ability in code generation.
We propose a novel learning-based selection approach named LAIL (LLM-Aware In-context Learning) for code generation.
arXiv Detail & Related papers (2023-10-15T06:12:58Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
Relation extraction (RE) consistently involves a certain degree of labeled or unlabeled data even if under zero-shot setting.
Recent studies have shown that large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt.
This work focuses on the study of exploring LLMs as zero-shot relation extractors.
arXiv Detail & Related papers (2023-10-08T06:17:39Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Semantic Consistency for Assuring Reliability of Large Language Models [9.876355290198639]
Large Language Models (LLMs) exhibit remarkable fluency and competence across various natural language tasks.
We introduce a general measure of semantic consistency, and formulate multiple versions of this metric to evaluate the performance of various LLMs.
We propose a novel prompting strategy, called Ask-to-Choose (A2C), to enhance semantic consistency.
arXiv Detail & Related papers (2023-08-17T18:11:33Z) - Enhancing In-Context Learning with Answer Feedback for Multi-Span
Question Answering [9.158919909909146]
In this paper, we propose a novel way of employing labeled data such as it informs LLM of some undesired output.
Experiments on three multi-span question answering datasets and a keyphrase extraction dataset show that our new prompting strategy consistently improves LLM's in-context learning performance.
arXiv Detail & Related papers (2023-06-07T15:20:24Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers?
We propose KaRR, a statistical approach to assess factual knowledge for LLMs.
Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.
arXiv Detail & Related papers (2023-05-17T18:54:37Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Learning to Ask Conversational Questions by Optimizing Levenshtein
Distance [83.53855889592734]
We introduce a Reinforcement Iterative Sequence Editing (RISE) framework that optimize the minimum Levenshtein distance (MLD) through explicit editing actions.
RISE is able to pay attention to tokens that are related to conversational characteristics.
Experimental results on two benchmark datasets show that RISE significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-06-30T08:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.