論文の概要: DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2410.14105v1
- Date: Fri, 18 Oct 2024 01:08:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:30.119869
- Title: DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks
- Title(参考訳): DMGNN:グラフニューラルネットワークにおけるバックドア攻撃の検出と緩和
- Authors: Hao Sui, Bing Chen, Jiale Zhang, Chengcheng Zhu, Di Wu, Qinghua Lu, Guodong Long,
- Abstract要約: 我々は,DMGNNを,アウト・オブ・ディストリビューション(OOD)およびイン・ディストリビューション(ID)グラフバックドア攻撃に対して提案する。
DMGNNは、偽説明に基づいてラベル遷移を予測することによって、隠されたIDとOODトリガを容易に識別できる。
DMGNNは最新技術(SOTA)防衛法をはるかに上回り、モデル性能のほとんど無視できる劣化を伴って攻撃成功率を5%に低下させる。
- 参考スコア(独自算出の注目度): 30.766013737094532
- License:
- Abstract: Recent studies have revealed that GNNs are highly susceptible to multiple adversarial attacks. Among these, graph backdoor attacks pose one of the most prominent threats, where attackers cause models to misclassify by learning the backdoored features with injected triggers and modified target labels during the training phase. Based on the features of the triggers, these attacks can be categorized into out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks, triggers with notable differences from the clean sample feature distributions constitute OOD backdoor attacks, whereas the triggers in ID backdoor attacks are nearly identical to the clean sample feature distributions. Existing methods can successfully defend against OOD backdoor attacks by comparing the feature distribution of triggers and clean samples but fail to mitigate stealthy ID backdoor attacks. Due to the lack of proper supervision signals, the main task accuracy is negatively affected in defending against ID backdoor attacks. To bridge this gap, we propose DMGNN against OOD and ID graph backdoor attacks that can powerfully eliminate stealthiness to guarantee defense effectiveness and improve the model performance. Specifically, DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation. To further filter the diversity of generated explainable graphs and erase the influence of the trigger features, we present a reverse sampling pruning method to screen and discard the triggers directly on the data level. Extensive experimental evaluations on open graph datasets demonstrate that DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance (within 3.5%).
- Abstract(参考訳): 近年の研究では、GNNは複数の敵の攻撃に対して非常に感受性が高いことが判明している。
これらのうち、グラフバックドア攻撃は最も顕著な脅威の1つであり、攻撃者はトレーニングフェーズ中にインジェクションされたトリガーと修正されたターゲットラベルでバックドアされた特徴を学習することでモデルが誤分類される。
トリガーの特徴に基づいて、これらの攻撃は、アウト・オブ・ディストリビューション(OOD)とイン・ディストリビューション(ID)グラフバックドア・アタックに分類することができ、クリーンサンプルの特徴分布と顕著な違いを持つトリガーはOODバックドア・アタックを構成する一方、IDバックドア・アタックのトリガーはクリーンサンプルの特徴分布とほぼ同一である。
既存の方法では、トリガーとクリーンサンプルの特徴分布を比較してOODバックドア攻撃を防御できるが、ステルスIDバックドア攻撃を軽減できない。
適切な監視信号がないため、メインタスクの精度はIDバックドア攻撃に対する防御に悪影響を及ぼす。
このギャップを埋めるため、我々は防衛効果の確保とモデル性能の向上を図るために、盗難を効果的に排除できるOODおよびIDグラフバックドア攻撃に対するDMGNNを提案する。
具体的には、DMGNNは、偽説明に基づいてラベル遷移を予測することによって、隠されたIDとOODトリガーを容易に識別できる。
さらに、生成した説明可能なグラフの多様性をフィルタリングし、トリガー特徴の影響を消去するために、データレベルで直接トリガーを表示・破棄する逆サンプリングプルーニング法を提案する。
オープングラフデータセットに対する大規模な実験的評価は、DMGNNが最先端(SOTA)防御手法をはるかに上回り、攻撃成功率を5%に低下させ、ほぼ無視できるモデル性能(3.5%)を低下させることを示した。
関連論文リスト
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Robustness-Inspired Defense Against Backdoor Attacks on Graph Neural Networks [30.82433380830665]
グラフニューラルネットワーク(GNN)は,ノード分類やグラフ分類といったタスクにおいて,有望な結果を達成している。
最近の研究で、GNNはバックドア攻撃に弱いことが判明し、実際の採用に重大な脅威をもたらしている。
本研究では,裏口検出にランダムなエッジドロップを用いることにより,汚染ノードとクリーンノードを効率的に識別できることを理論的に示す。
論文 参考訳(メタデータ) (2024-06-14T08:46:26Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
グラフニューラルネットワーク(GNN)は、様々なタスクにおいて顕著なパフォーマンスを示している。
バックドア攻撃は、トレーニンググラフ内のノードのセットにバックドアトリガとターゲットクラスラベルをアタッチすることで、グラフを汚染する。
本稿では,IDトリガによる無意味なグラフバックドア攻撃の新たな問題について検討する。
論文 参考訳(メタデータ) (2024-05-17T13:09:39Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
バックドア攻撃は、悪質なトリガをDNNモデルに過剰に挿入することを目的としており、テストシナリオ中に不正な制御を許可している。
既存の方法では防衛戦略に対する堅牢性が欠如しており、主に無作為な試薬を無作為に選別しながら、引き金の盗難を強化することに重点を置いている。
信頼性スコアの低いサンプルを選別し、これらの攻撃を識別・対処する上で、守備側の課題を著しく増大させる。
論文 参考訳(メタデータ) (2023-10-08T18:57:36Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Defending Against Backdoor Attack on Graph Nerual Network by
Explainability [7.147386524788604]
GNNにおける最初のバックドア検出・防御手法を提案する。
グラフデータでは、現在のバックドアアタックは、トリガーを注入するためにグラフ構造を操作することに焦点を当てている。
その結果,いくつかの説明的評価指標では,良性サンプルと悪質サンプルとの間に明らかな違いがあることが判明した。
論文 参考訳(メタデータ) (2022-09-07T03:19:29Z) - Adversarial Fine-tuning for Backdoor Defense: Connect Adversarial
Examples to Triggered Samples [15.57457705138278]
本稿では,バックドアトリガを除去する新たなAFT手法を提案する。
AFTは、クリーンサンプルの性能劣化を明白にすることなく、バックドアトリガを効果的に消去することができる。
論文 参考訳(メタデータ) (2022-02-13T13:41:15Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。