From Question to Exploration: Test-Time Adaptation in Semantic Segmentation?
- URL: http://arxiv.org/abs/2310.05341v5
- Date: Fri, 01 Nov 2024 00:37:44 GMT
- Title: From Question to Exploration: Test-Time Adaptation in Semantic Segmentation?
- Authors: Chang'an Yi, Haotian Chen, Yifan Zhang, Yonghui Xu, Yan Zhou, Lizhen Cui,
- Abstract summary: Test-time adaptation (TTA) aims to adapt a model, initially trained on training data, to test data with potential distribution shifts.
We investigate the applicability of existing classic TTA strategies in semantic segmentation.
- Score: 21.27237423511349
- License:
- Abstract: Test-time adaptation (TTA) aims to adapt a model, initially trained on training data, to test data with potential distribution shifts. Most existing TTA methods focus on classification problems. The pronounced success of classification might lead numerous newcomers and engineers to assume that classic TTA techniques can be directly applied to the more challenging task of semantic segmentation. However, this belief is still an open question. In this paper, we investigate the applicability of existing classic TTA strategies in semantic segmentation. Our comprehensive results have led to three key observations. First, the classic normalization updating strategy only brings slight performance improvement, and in some cases, it might even adversely affect the results. Even with the application of advanced distribution estimation techniques like batch renormalization, the problem remains unresolved. Second, although the teacher-student scheme does enhance the training stability for segmentation TTA in the presence of noisy pseudo-labels and temporal correlation, it cannot directly result in performance improvement compared to the original model without TTA under complex data distribution. Third, segmentation TTA suffers a severe long-tailed class-imbalance problem, which is substantially more complex than that in TTA for classification. This long-tailed challenge negatively affects segmentation TTA performance, even when the accuracy of pseudo-labels is high. Besides those observations, we find that visual prompt tuning (VisPT) is promising in segmentation TTA and propose a novel method named TTAP. The outstanding performance of TTAP has also been verified. We hope the community can give more attention to this challenging, yet important, segmentation TTA task in the future. The source code is available at: \textit{https://github.com/ycarobot/TTAP
Related papers
- Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings.
We propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting.
arXiv Detail & Related papers (2024-04-07T22:31:34Z) - Layerwise Early Stopping for Test Time Adaptation [0.2968738145616401]
Test Time Adaptation (TTA) addresses the problem of distribution shift by enabling pretrained models to learn new features on an unseen domain at test time.
It poses a significant challenge to maintain a balance between learning new features and retaining useful pretrained features.
We propose Layerwise EArly STopping (LEAST) for TTA to address this problem.
arXiv Detail & Related papers (2024-04-04T19:55:11Z) - Few Clicks Suffice: Active Test-Time Adaptation for Semantic
Segmentation [14.112999441288615]
Test-time adaptation (TTA) adapts pre-trained models during inference using unlabeled test data.
There is still a significant performance gap between the TTA approaches and their supervised counterparts.
We propose ATASeg framework, which consists of two parts, i.e., model adapter and label annotator.
arXiv Detail & Related papers (2023-12-04T12:16:02Z) - Persistent Test-time Adaptation in Recurring Testing Scenarios [12.024233973321756]
Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously.
Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods.
We propose persistent TTA (PeTTA) which senses when the model is diverging towards collapse and adjusts the adaptation strategy.
arXiv Detail & Related papers (2023-11-30T02:24:44Z) - Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with
Balanced Normalization [52.03927261909813]
Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift.
We argue failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data.
The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers.
arXiv Detail & Related papers (2023-09-26T14:06:26Z) - Improved Test-Time Adaptation for Domain Generalization [48.239665441875374]
Test-time training (TTT) adapts the learned model with test data.
This work addresses two main factors: selecting an appropriate auxiliary TTT task for updating and identifying reliable parameters to update during the test phase.
We introduce additional adaptive parameters for the trained model, and we suggest only updating the adaptive parameters during the test phase.
arXiv Detail & Related papers (2023-04-10T10:12:38Z) - Towards Stable Test-Time Adaptation in Dynamic Wild World [60.98073673220025]
Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts between training and testing data by adapting a given model on test samples.
Online model updating of TTA may be unstable and this is often a key obstacle preventing existing TTA methods from being deployed in the real world.
arXiv Detail & Related papers (2023-02-24T02:03:41Z) - A Probabilistic Framework for Lifelong Test-Time Adaptation [34.07074915005366]
Test-time adaptation (TTA) is the problem of updating a pre-trained source model at inference time given test input(s) from a different target domain.
We present PETAL (Probabilistic lifElong Test-time Adaptation with seLf-training prior), which solves lifelong TTA using a probabilistic approach.
Our method achieves better results than the current state-of-the-art for online lifelong test-time adaptation across various benchmarks.
arXiv Detail & Related papers (2022-12-19T18:42:19Z) - Test-time Adaptation vs. Training-time Generalization: A Case Study in
Human Instance Segmentation using Keypoints Estimation [48.30744831719513]
We consider the problem of improving the human instance segmentation mask quality for a given test image using keypoints estimation.
The first approach is a test-time adaptation (TTA) method, where we allow test-time modification of the segmentation network's weights using a single unlabeled test image.
The second approach is a training-time generalization (TTG) method, where we permit offline access to the labeled source dataset but not the test-time modification of weights.
arXiv Detail & Related papers (2022-12-12T20:56:25Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.