Rotation Matters: Generalized Monocular 3D Object Detection for Various
Camera Systems
- URL: http://arxiv.org/abs/2310.05366v1
- Date: Mon, 9 Oct 2023 02:52:22 GMT
- Title: Rotation Matters: Generalized Monocular 3D Object Detection for Various
Camera Systems
- Authors: SungHo Moon, JinWoo Bae, SungHoon Im
- Abstract summary: 3D object detection performance is significantly reduced when applied to a camera system different from the system used to capture the training datasets.
A 3D detector trained on datasets from a passenger car mostly fails to regress accurate 3D bounding boxes for a camera mounted on a bus.
We propose a generalized 3D object detection method that can be universally applied to various camera systems.
- Score: 15.47493325786152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research on monocular 3D object detection is being actively studied, and as a
result, performance has been steadily improving. However, 3D object detection
performance is significantly reduced when applied to a camera system different
from the system used to capture the training datasets. For example, a 3D
detector trained on datasets from a passenger car mostly fails to regress
accurate 3D bounding boxes for a camera mounted on a bus. In this paper, we
conduct extensive experiments to analyze the factors that cause performance
degradation. We find that changing the camera pose, especially camera
orientation, relative to the road plane caused performance degradation. In
addition, we propose a generalized 3D object detection method that can be
universally applied to various camera systems. We newly design a compensation
module that corrects the estimated 3D bounding box location and heading
direction. The proposed module can be applied to most of the recent 3D object
detection networks. It increases AP3D score (KITTI moderate, IoU $> 70\%$)
about 6-to-10-times above the baselines without additional training. Both
quantitative and qualitative results show the effectiveness of the proposed
method.
Related papers
- HeightFormer: A Semantic Alignment Monocular 3D Object Detection Method from Roadside Perspective [11.841338298700421]
We propose a novel 3D object detection framework integrating Spatial Former and Voxel Pooling Former to enhance 2D-to-3D projection based on height estimation.
Experiments were conducted using the Rope3D and DAIR-V2X-I dataset, and the results demonstrated the outperformance of the proposed algorithm in the detection of both vehicles and cyclists.
arXiv Detail & Related papers (2024-10-10T09:37:33Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection) to improve the accuracy of 3D object detection.
Our results show that SOGDet consistently enhance the performance of three baseline methods in terms of nuScenes Detection Score (NDS) and mean Average Precision (mAP)
This indicates that the combination of 3D object detection and 3D semantic occupancy leads to a more comprehensive perception of the 3D environment, thereby aiding build more robust autonomous driving systems.
arXiv Detail & Related papers (2023-08-26T07:38:21Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - Towards Model Generalization for Monocular 3D Object Detection [57.25828870799331]
We present an effective unified camera-generalized paradigm (CGP) for Mono3D object detection.
We also propose the 2D-3D geometry-consistent object scaling strategy (GCOS) to bridge the gap via an instance-level augment.
Our method called DGMono3D achieves remarkable performance on all evaluated datasets and surpasses the SoTA unsupervised domain adaptation scheme.
arXiv Detail & Related papers (2022-05-23T23:05:07Z) - Homography Loss for Monocular 3D Object Detection [54.04870007473932]
A differentiable loss function, termed as Homography Loss, is proposed to achieve the goal, which exploits both 2D and 3D information.
Our method yields the best performance compared with the other state-of-the-arts by a large margin on KITTI 3D datasets.
arXiv Detail & Related papers (2022-04-02T03:48:03Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3D object detection often involves complicated training and testing pipelines.
Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds.
arXiv Detail & Related papers (2021-10-13T17:59:38Z) - MonoCInIS: Camera Independent Monocular 3D Object Detection using
Instance Segmentation [55.96577490779591]
Methods need to have a degree of 'camera independence' in order to benefit from large and heterogeneous training data.
We show that more data does not automatically guarantee a better performance, but rather, methods need to have a degree of 'camera independence' in order to benefit from large and heterogeneous training data.
arXiv Detail & Related papers (2021-10-01T14:56:37Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.