論文の概要: Enhancing Clustered Federated Learning: Integration of Strategies and Improved Methodologies
- arxiv url: http://arxiv.org/abs/2310.05397v2
- Date: Mon, 03 Mar 2025 10:18:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:09:56.739775
- Title: Enhancing Clustered Federated Learning: Integration of Strategies and Improved Methodologies
- Title(参考訳): クラスタ型フェデレーション学習の強化:戦略の統合と改善手法
- Authors: Yongxin Guo, Xiaoying Tang, Tao Lin,
- Abstract要約: フェデレートラーニング(Federated Learning, FL)は、分散機械学習の手法である。
クライアント間のデータのばらつきは、すべてのローカルディストリビューションを横断するトレーニングモデルに課題をもたらす。
近年の研究では、クラスタリングがクライアントを異なるクラスタに分割することで、FLにおけるクライアントの不均一性に対処するソリューションとして提案されている。
- 参考スコア(独自算出の注目度): 4.489171618387544
- License:
- Abstract: Federated Learning (FL) is an evolving distributed machine learning approach that safeguards client privacy by keeping data on edge devices. However, the variation in data among clients poses challenges in training models that excel across all local distributions. Recent studies suggest clustering as a solution to address client heterogeneity in FL by grouping clients with distribution shifts into distinct clusters. Nonetheless, the diverse learning frameworks used in current clustered FL methods create difficulties in integrating these methods, leveraging their advantages, and making further enhancements. To this end, this paper conducts a thorough examination of existing clustered FL methods and introduces a four-tier framework, named HCFL, to encompass and extend the existing approaches. Utilizing the HCFL, we identify persistent challenges associated with current clustering methods in each tier and propose an enhanced clustering method called HCFL$^{+}$ to overcome these challenges. Through extensive numerical evaluations, we demonstrate the effectiveness of our clustering framework and the enhanced components. Our code is available at https://github.com/LINs-lab/HCFL.
- Abstract(参考訳): Federated Learning(FL)は、エッジデバイスにデータを保持することによってクライアントのプライバシを保護する、進化中の分散機械学習アプローチである。
しかしながら、クライアント間のデータのばらつきは、すべてのローカルディストリビューションを横断するトレーニングモデルにおいて、課題を引き起こします。
近年の研究では、クラスタリングがクライアントを異なるクラスタに分割することで、FLにおけるクライアントの不均一性に対処するソリューションとして提案されている。
それでも、現在のクラスタ化FLメソッドで使われている多様な学習フレームワークは、これらのメソッドを統合するのに困難をもたらし、それらの利点を活用し、さらに強化する。
そこで本研究では,既存のクラスタリングFL手法を徹底的に検討し,HCFLと呼ばれる4層フレームワークを導入し,既存のアプローチを包含・拡張する。
HCFLを利用すると、各階層における現在のクラスタリング手法に関連する永続的な課題を特定し、これらの課題を克服するためにHCFL$^{+}$と呼ばれる拡張クラスタリング手法を提案する。
大規模な数値評価を通じて,クラスタリングフレームワークと拡張コンポーネントの有効性を実証する。
私たちのコードはhttps://github.com/LINs-lab/HCFL.orgで公開されています。
関連論文リスト
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - LCFed: An Efficient Clustered Federated Learning Framework for Heterogeneous Data [21.341280782748278]
クラスタ型フェデレーションラーニング(CFL)は、フェデレーションラーニング(FL)におけるデータ不均一性に起因するパフォーマンス上の課題に対処する。
既存のCFLアプローチは、クラスタ内の知識共有を厳密に制限し、クラスタ内のトレーニングとグローバル知識の統合を欠いている。
これらの課題に対処するための効率的なCFLフレームワークであるLCFedを提案する。
論文 参考訳(メタデータ) (2025-01-03T14:59:48Z) - A Bayesian Framework for Clustered Federated Learning [14.426129993432193]
連邦学習(FL)の主な課題の1つは、非独立で同一に分散された(非IID)クライアントデータを扱うことである。
本稿では、クライアントをクラスタに関連付けるクラスタ化FLのための統一ベイズフレームワークを提案する。
この作業は、クライアントとクラスタの関連に関する洞察を提供し、新しい方法でクライアントの知識共有を可能にする。
論文 参考訳(メタデータ) (2024-10-20T19:11:24Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - Stochastic Clustered Federated Learning [21.811496586350653]
本稿では,一般の非IID問題に対する新しいクラスタ化フェデレーション学習手法であるStoCFLを提案する。
詳細は、StoCFLは、任意の割合のクライアント参加と新しく加入したクライアントをサポートする柔軟なCFLフレームワークを実装しています。
その結果,StoCFLはクラスタ数の不明な場合でも,有望なクラスタ結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T01:39:16Z) - FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering [4.489171618387544]
Federated Learning(FL)は、エッジデバイス上でクライアントデータを保持することによって、プライバシを保護する機械学習パラダイムである。
本稿では,多様な分布シフトの同時発生による学習課題を特定する。
提案するクラスタリングの原理に従う新しいクラスタリングアルゴリズムフレームワークであるFedRCを提案する。
論文 参考訳(メタデータ) (2023-01-29T06:50:45Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
統合学習システムでは、例えばモバイルデバイスや組織参加者といったクライアントは通常、個人の好みや行動パターンが異なる。
本稿では,クライアントグループと各クライアントを統一最適化フレームワークで活用する,新しい重み付きクライアントベースクラスタリングFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-13T02:39:19Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
フェデレートラーニング(Federated Learning, FL)は、プライバシ保護のためのコラボレーション機械学習パラダイムである。
本稿では,この課題に対処するため,データヘテロジニアス・ロバストFLアプローチであるFedGSPを提案する。
その結果,FedGSPは7つの最先端アプローチと比較して平均3.7%の精度向上を実現していることがわかった。
論文 参考訳(メタデータ) (2022-01-31T03:15:28Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。