論文の概要: Over-the-Air Fair Federated Learning via Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2501.03392v1
- Date: Mon, 06 Jan 2025 21:16:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:50:26.890613
- Title: Over-the-Air Fair Federated Learning via Multi-Objective Optimization
- Title(参考訳): 多目的最適化によるオーバー・ザ・エアフェアフェデレーション学習
- Authors: Shayan Mohajer Hamidi, Ali Bereyhi, Saba Asaad, H. Vincent Poor,
- Abstract要約: 本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
- 参考スコア(独自算出の注目度): 52.295563400314094
- License:
- Abstract: In federated learning (FL), heterogeneity among the local dataset distributions of clients can result in unsatisfactory performance for some, leading to an unfair model. To address this challenge, we propose an over-the-air fair federated learning algorithm (OTA-FFL), which leverages over-the-air computation to train fair FL models. By formulating FL as a multi-objective minimization problem, we introduce a modified Chebyshev approach to compute adaptive weighting coefficients for gradient aggregation in each communication round. To enable efficient aggregation over the multiple access channel, we derive analytical solutions for the optimal transmit scalars at the clients and the de-noising scalar at the parameter server. Extensive experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance compared to existing methods.
- Abstract(参考訳): フェデレートラーニング(FL)では、クライアントのローカルデータセット分布の不均一性は、一部の顧客にとって不満足なパフォーマンスをもたらし、不公平なモデルに繋がる。
この課題に対処するために、オーバー・ザ・エアの計算を利用してフェアなFLモデルを訓練するオーバー・ザ・エア・フェア・フェデレーション・ラーニングアルゴリズム(OTA-FFL)を提案する。
FLを多目的最小化問題として定式化することにより、各通信ラウンドにおける勾配凝集に対する適応重み付け係数を計算するための修正チェビシェフ手法を導入する。
マルチアクセスチャネル上で効率的なアグリゲーションを実現するため,クライアントにおける最適な送信スカラーとパラメータサーバにおけるデノイズスカラーの解析解を導出する。
実験により,OTA-FFLが既存手法に比べて公正性,堅牢性に優れていたことが実証された。
関連論文リスト
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Federated Learning with Flexible Control [30.65854375019346]
フェデレートラーニング(FL)は、ユーザが収集したローカルデータから分散モデルトレーニングを可能にする。
制約のあるリソースと潜在的に高いダイナミクスを持つ分散システムでは、例えばモバイルエッジネットワークでは、FLの効率が重要な問題である。
フレキシブルに調整可能な複数のオプションを持つFLアルゴリズムであるFlexFLを提案する。
論文 参考訳(メタデータ) (2022-12-16T14:21:29Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - A Fair Federated Learning Framework With Reinforcement Learning [23.675056844328]
フェデレートラーニング(Federated Learning, FL)は、多くのクライアントが中央サーバの協調の下でモデルを協調的にトレーニングするパラダイムである。
本稿では,クライアントにアグリゲーション重み付けを割り当てるポリシを自動的に学習するPG-FFLという強化学習フレームワークを提案する。
フレームワークの有効性を検証するため、多様なデータセットに対して広範な実験を行う。
論文 参考訳(メタデータ) (2022-05-26T15:10:16Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。