論文の概要: Entropy-MCMC: Sampling from Flat Basins with Ease
- arxiv url: http://arxiv.org/abs/2310.05401v2
- Date: Mon, 5 Feb 2024 03:54:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 04:41:25.377766
- Title: Entropy-MCMC: Sampling from Flat Basins with Ease
- Title(参考訳): エントロピーMCMC:平底盆地からの試料採取
- Authors: Bolian Li, Ruqi Zhang
- Abstract要約: 我々は, シャープモードから解放された円滑な後円板に類似した定常分布である補助誘導変数を導入し, MCMC試料を平らな盆地に導出する。
この導出変数をモデルパラメータと統合することにより、計算オーバーヘッドを最小限に抑えた効率的なサンプリングを可能にする、単純なジョイント分布を作成する。
実験により,提案手法は後方の平らな盆地から試料を採取し,比較したベースラインを複数ベンチマークで比較した。
- 参考スコア(独自算出の注目度): 12.716429755564823
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Bayesian deep learning counts on the quality of posterior distribution
estimation. However, the posterior of deep neural networks is highly
multi-modal in nature, with local modes exhibiting varying generalization
performance. Given a practical budget, targeting at the original posterior can
lead to suboptimal performance, as some samples may become trapped in "bad"
modes and suffer from overfitting. Leveraging the observation that "good" modes
with low generalization error often reside in flat basins of the energy
landscape, we propose to bias sampling on the posterior toward these flat
regions. Specifically, we introduce an auxiliary guiding variable, the
stationary distribution of which resembles a smoothed posterior free from sharp
modes, to lead the MCMC sampler to flat basins. By integrating this guiding
variable with the model parameter, we create a simple joint distribution that
enables efficient sampling with minimal computational overhead. We prove the
convergence of our method and further show that it converges faster than
several existing flatness-aware methods in the strongly convex setting.
Empirical results demonstrate that our method can successfully sample from flat
basins of the posterior, and outperforms all compared baselines on multiple
benchmarks including classification, calibration, and out-of-distribution
detection.
- Abstract(参考訳): ベイズ深層学習は後方分布推定の質をカウントする。
しかし、ディープニューラルネットワークの後方は本質的に非常にマルチモーダルであり、局所モードは一般化性能が異なる。
実用的な予算が与えられると、元の後方を狙うことは、いくつかのサンプルが"悪い"モードに閉じ込められ、過剰なフィッティングに苦しむ可能性があるため、最適以下のパフォーマンスにつながる可能性がある。
一般化誤差の低い「良い」モードはエネルギーランドスケープの平坦な流域にしばしば存在するという観察を活かし、これらの平坦な領域の後方の偏差サンプリングを提案する。
具体的には,mcmcサンプラーを平らな盆地に導くために,シャープモードのない後方平滑化に類似した定常分布を補助誘導変数として導入する。
この導出変数をモデルパラメータと統合することにより、計算オーバーヘッドを最小限に抑えた効率的なサンプリングを可能にする単純な結合分布を作成する。
提案手法の収束性を証明し, 強凸条件下での既存の平坦性認識法よりも高速に収束することを示す。
実験により,本手法は後方の平らな盆地から試料を採取し,分類,校正,分布外検出など,複数のベンチマークで比較した基準線を上回った。
関連論文リスト
- Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements [45.70011319850862]
拡散モデルは視覚生成のための強力な基礎モデルとして登場してきた。
現在の後方サンプリングに基づく手法では、測定結果を後方サンプリングに取り込み、対象データの分布を推定する。
本研究は, 早期に高周波情報を早期に導入し, より大きい推定誤差を生じさせることを示す。
工芸品計測を取り入れた新しい拡散後サンプリング手法DPS-CMを提案する。
論文 参考訳(メタデータ) (2024-11-15T00:06:57Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - A New Robust Multivariate Mode Estimator for Eye-tracking Calibration [0.0]
本稿では,多変量分布の主モードを推定する新しい手法を提案する。
この種のマルチモーダル分布では、ほとんどの中心的傾向測度は主固定座標の推定に失敗する。
そこで我々は,BRILと呼ばれる多変量分布の第1モードを同定するアルゴリズムを開発した。
クラスタにグループ化され,ランダムに分散された,非常に高い割合のアウトリーチを含む分布においても,優れた性能が得られた。
論文 参考訳(メタデータ) (2021-07-16T17:45:19Z) - Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov
Chain Monte Carlo Methods [13.649384403827359]
正規化フローは複雑なターゲット分布を生成でき、ベイズ統計学における多くの応用において有望であることを示す。
対象の後方分布からのデータセットは事前に入手できないため、フローは通常、基底分布からのサンプルのみを必要とする逆のKullback-Leibler(KL)分散を用いて訓練される。
ここでは, 直接KL偏差を損失として用い, (i) 後部の局所MCMCアルゴリズムを正規化流で支援し, (ii) 混合速度を高速化し, (ii) この方法で生成されたデータを用いて流のトレーニングを行う。
論文 参考訳(メタデータ) (2021-07-16T16:40:36Z) - Leverage Score Sampling for Complete Mode Coverage in Generative
Adversarial Networks [11.595070613477548]
生成モデルは、経験的データ分布の頻度が低い、表現不足のモードを見落とすことができる。
リッジレバレッジスコアに基づくサンプリング手順を提案し、標準手法と比較してモードカバレッジを大幅に向上させます。
論文 参考訳(メタデータ) (2021-04-06T09:00:38Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
本稿では,3次元形状対応のための教師なし学習手法を提案する。
提案手法は,複数のデータセット上での最先端技術よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-28T22:24:07Z) - Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors [8.11978827493967]
MCMCの並列実行, 変動型, モードベースの推論を用いて, できるだけ多くのモードをヒットさせる手法を提案する。
重み付き推論プロセスが真のデータを近似する例と理論的整合性を示す。
いくつかのモデルファミリで実践的な実装を示す。
論文 参考訳(メタデータ) (2020-06-22T15:26:59Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。