論文の概要: Enhancing Interpretability and Generalizability in Extended Isolation Forests
- arxiv url: http://arxiv.org/abs/2310.05468v3
- Date: Wed, 09 Oct 2024 09:56:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:29:08.094320
- Title: Enhancing Interpretability and Generalizability in Extended Isolation Forests
- Title(参考訳): 広葉樹林における解釈性と一般化性の向上
- Authors: Alessio Arcudi, Davide Frizzo, Chiara Masiero, Gian Antonio Susto,
- Abstract要約: ExIFFI (Extended isolated Forest Feature Importance) は、EIF(Extended isolated Forest)モデルによる予測を説明する手法である。
EIF+は、修正された分割戦略により、見えない異常を検出するモデルの能力を高めるように設計されている。
ExIFFIは、11の現実世界のデータセットのうち8つで、他の教師なしの解釈可能性メソッドよりも優れています。
- 参考スコア(独自算出の注目度): 5.139809663513828
- License:
- Abstract: Anomaly Detection (AD) focuses on identifying unusual behaviors in complex datasets. Machine Learning (ML) algorithms and Decision Support Systems (DSSs) provide effective solutions for AD, but detecting anomalies alone may not be enough, especially in engineering, where diagnostics and maintenance are crucial. Users need clear explanations to support root cause analysis and build trust in the model. The unsupervised nature of AD, however, makes interpretability a challenge. This paper introduces Extended Isolation Forest Feature Importance (ExIFFI), a method that explains predictions made by Extended Isolation Forest (EIF) models, which split data using hyperplanes. ExIFFI provides explanations at both global and local levels by leveraging feature importance. We also present an improved version, Enhanced Extended Isolation Forest (EIF+), designed to enhance the model's ability to detect unseen anomalies through a revised splitting strategy. Using five synthetic and eleven real-world datasets, we conduct a comparative analysis, evaluating unsupervised AD methods with the Average Precision metric. EIF+ consistently outperforms EIF across all datasets when trained without anomalies, demonstrating better generalization. To assess ExIFFI's interpretability, we introduce the Area Under the Curve of Feature Selection (AUC\_FS), a novel metric using feature selection as a proxy task. ExIFFI outperforms other unsupervised interpretability methods on 8 of 11 real-world datasets and successfully identifies anomalous features in synthetic datasets. When trained only on inliers, ExIFFI also outperforms competing models on real-world data and accurately detects anomalous features in synthetic datasets. We provide open-source code to encourage further research and reproducibility.
- Abstract(参考訳): 異常検出(AD)は、複雑なデータセットにおける異常な振る舞いを特定することに焦点を当てている。
機械学習(ML)アルゴリズムと決定支援システム(DSS)はADに効果的なソリューションを提供するが、特に診断とメンテナンスが不可欠であるエンジニアリングでは、異常のみを検出するだけでは不十分である。
ユーザは、根本原因分析をサポートし、モデルの信頼性を構築するために、明確な説明が必要です。
しかし、ADの教師なしの性質は、解釈可能性に挑戦している。
本稿では,超平面を用いたデータ分割を行う拡張孤立林(EIF)モデルによる予測を記述したExIFFI(ExendedIsolate Forest Feature Importance)を提案する。
ExIFFIは、機能の重要性を活用することで、グローバルレベルとローカルレベルの両方で説明を提供する。
また,改良版である拡張拡張隔離林 (EIF+) も提案する。
5つの実世界のデータセットと11個の実世界のデータセットを用いて比較分析を行い、平均精度測定値を用いて教師なしAD手法の評価を行った。
EIF+は、異常なくトレーニングされた場合、すべてのデータセットでIEFを一貫して上回り、より優れた一般化を示す。
ExIFFIの解釈可能性を評価するために,機能選択をプロキシタスクとして用いる新しい指標であるAUC\_FS(Area Under the Curve of Feature Selection)を導入する。
ExIFFIは、11の現実世界のデータセットのうち8つで、他の教師なしの解釈可能性メソッドよりも優れており、合成データセットにおける異常な特徴の識別に成功している。
ExIFFIは、インリエのみに基づいてトレーニングされると、実際のデータ上で競合するモデルよりも優れ、合成データセットにおける異常な特徴を正確に検出する。
さらなる研究と再現性を促進するために、オープンソースコードを提供しています。
関連論文リスト
- Directly Handling Missing Data in Linear Discriminant Analysis for Enhancing Classification Accuracy and Interpretability [1.4840867281815378]
重み付き欠失線形判別分析(WLDA)と呼ばれる新しい頑健な分類法を提案する。
WLDAは線形判別分析(LDA)を拡張して、計算不要な値でデータセットを処理する。
我々はWLDAの特性を確立するために詳細な理論解析を行い、その説明可能性について徹底的に評価する。
論文 参考訳(メタデータ) (2024-06-30T14:21:32Z) - AcME-AD: Accelerated Model Explanations for Anomaly Detection [5.702288833888639]
AcME-ADは相互運用性のためのモデルに依存しない効率的なソリューションです。
ローカルな特徴重要度スコアと、各異常に寄与する要因を隠蔽するWhat-if分析ツールを提供する。
本稿では,AcME-ADの基礎とその既存手法に対する利点を解明し,合成データと実データの両方を用いて,その有効性を検証する。
論文 参考訳(メタデータ) (2024-03-02T16:11:58Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Active Learning-based Isolation Forest (ALIF): Enhancing Anomaly
Detection in Decision Support Systems [2.922007656878633]
ALIFは一般的な孤立林の軽量な修正であり、他の最先端のアルゴリズムと比較して優れた性能を示した。
提案手法は,現実のシナリオでますます普及しているDSS(Decision Support System)の存在に特に注目されている。
論文 参考訳(メタデータ) (2022-07-08T14:36:38Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。