Logic-Q: Improving Deep Reinforcement Learning-based Quantitative Trading via Program Sketch-based Tuning
- URL: http://arxiv.org/abs/2310.05551v3
- Date: Thu, 06 Feb 2025 13:40:44 GMT
- Title: Logic-Q: Improving Deep Reinforcement Learning-based Quantitative Trading via Program Sketch-based Tuning
- Authors: Zhiming Li, Junzhe Jiang, Yushi Cao, Aixin Cui, Bozhi Wu, Bo Li, Yang Liu, Danny Dongning Sun,
- Abstract summary: We propose a universal logic-guided deep reinforcement learning framework for Q-trading, called Logic-Q.<n>In particular, Logic-Q adopts the program synthesis by sketching paradigm and introduces a logic-guided model design that leverages a lightweight, plug-and-play market trend-aware program sketch to determine the market trend.<n>Extensive evaluations of two popular quantitative trading tasks demonstrate that Logic-Q can significantly improve the performance of previous state-of-the-art DRL trading strategies.
- Score: 9.039809980024852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) has revolutionized quantitative trading (Q-trading) by achieving decent performance without significant human expert knowledge. Despite its achievements, we observe that the current state-of-the-art DRL models are still ineffective in identifying the market trends, causing them to miss good trading opportunities or suffer from large drawdowns when encountering market crashes. To address this limitation, a natural approach is to incorporate human expert knowledge in identifying market trends. Whereas, such knowledge is abstract and hard to be quantified. In order to effectively leverage abstract human expert knowledge, in this paper, we propose a universal logic-guided deep reinforcement learning framework for Q-trading, called Logic-Q. In particular, Logic-Q adopts the program synthesis by sketching paradigm and introduces a logic-guided model design that leverages a lightweight, plug-and-play market trend-aware program sketch to determine the market trend and correspondingly adjusts the DRL policy in a post-hoc manner. Extensive evaluations of two popular quantitative trading tasks demonstrate that Logic-Q can significantly improve the performance of previous state-of-the-art DRL trading strategies.
Related papers
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.
With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.
We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)
It employs self-generated natural language critiques as feedback to guide the step-level search process.
This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization [86.32257216965229]
We propose a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding.
StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR)
With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning.
arXiv Detail & Related papers (2025-03-17T08:51:44Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
Recent large language model (LLM) reasoning suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth.
This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning.
We propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model.
arXiv Detail & Related papers (2025-03-03T15:20:41Z) - Risk-averse policies for natural gas futures trading using distributional reinforcement learning [0.0]
This paper studies the effectiveness of three distributional RL algorithms for natural gas futures trading.
To the best of our knowledge, these algorithms have never been applied in a trading context.
We show that training C51 and IQN to maximize CVaR produces risk-sensitive policies with adjustable risk aversion.
arXiv Detail & Related papers (2025-01-08T11:11:25Z) - MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
Large gradient algorithms like Adam, Adam, and their variants have been central to the development of this type of training.
We propose a framework that reconciles preconditioned gradient optimization methods with variance reduction via a scaled momentum technique.
arXiv Detail & Related papers (2024-11-15T18:57:39Z) - Hierarchical Reinforced Trader (HRT): A Bi-Level Approach for Optimizing Stock Selection and Execution [0.9553307596675155]
We introduce the Hierarchical Reinforced Trader (HRT), a novel trading strategy employing a bi-level Hierarchical Reinforcement Learning framework.
HRT integrates a Proximal Policy Optimization (PPO)-based High-Level Controller (HLC) for strategic stock selection with a Deep Deterministic Policy Gradient (DDPG)-based Low-Level Controller (LLC) tasked with optimizing trade executions to enhance portfolio value.
arXiv Detail & Related papers (2024-10-19T01:29:38Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading [6.305870529904885]
We propose MOT, which designs multiple actors with disentangled representation learning to model the different patterns of the market.
Experimental results on real futures market data demonstrate that MOT exhibits excellent profit capabilities while balancing risks.
arXiv Detail & Related papers (2024-06-03T01:42:52Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL)
We introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL.
We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices.
arXiv Detail & Related papers (2023-11-01T03:32:13Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
Reinforcement Learning (RL) is a branch of machine learning where agents learn by interacting with their environment.
This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for High-Frequency Trading (HFT) scenarios.
Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns.
arXiv Detail & Related papers (2023-09-13T06:15:40Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Commodities Trading through Deep Policy Gradient Methods [0.0]
It formulates the commodities trading problem as a continuous, discrete-time dynamical system.
Two policy algorithms, namely actor-based and actor-critic-based approaches, are introduced.
Backtesting on front-month natural gas futures demonstrates that DRL models increase the Sharpe ratio by $83%$ compared to the buy-and-hold baseline.
arXiv Detail & Related papers (2023-08-10T17:21:12Z) - Reinforcement Learning from Diverse Human Preferences [68.4294547285359]
This paper develops a method for crowd-sourcing preference labels and learning from diverse human preferences.
The proposed method is tested on a variety of tasks in DMcontrol and Meta-world.
It has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback.
arXiv Detail & Related papers (2023-01-27T15:18:54Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
This paper presents a model to generate profitable trades in the stock market using Deep Reinforcement Learning (DRL) algorithms.
We formulate the trading problem as a Partially Observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market.
We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm reporting a 2.68 Sharpe Ratio on unseen data set.
arXiv Detail & Related papers (2022-07-05T11:34:29Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
This paper proposes a novel model of sequential information design, namely the Markov persuasion processes (MPPs)
Planning in MPPs faces the unique challenge in finding a signaling policy that is simultaneously persuasive to the myopic receivers and inducing the optimal long-term cumulative utilities of the sender.
We design a provably efficient no-regret learning algorithm, the Optimism-Pessimism Principle for Persuasion Process (OP4), which features a novel combination of both optimism and pessimism principles.
arXiv Detail & Related papers (2022-02-22T05:41:43Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - An Application of Deep Reinforcement Learning to Algorithmic Trading [4.523089386111081]
This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem.
It proposes a novel DRL trading strategy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets.
The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data.
arXiv Detail & Related papers (2020-04-07T14:57:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.