Logic-Q: Improving Deep Reinforcement Learning-based Quantitative Trading via Program Sketch-based Tuning
- URL: http://arxiv.org/abs/2310.05551v3
- Date: Thu, 06 Feb 2025 13:40:44 GMT
- Title: Logic-Q: Improving Deep Reinforcement Learning-based Quantitative Trading via Program Sketch-based Tuning
- Authors: Zhiming Li, Junzhe Jiang, Yushi Cao, Aixin Cui, Bozhi Wu, Bo Li, Yang Liu, Danny Dongning Sun,
- Abstract summary: We propose a universal logic-guided deep reinforcement learning framework for Q-trading, called Logic-Q.
In particular, Logic-Q adopts the program synthesis by sketching paradigm and introduces a logic-guided model design that leverages a lightweight, plug-and-play market trend-aware program sketch to determine the market trend.
Extensive evaluations of two popular quantitative trading tasks demonstrate that Logic-Q can significantly improve the performance of previous state-of-the-art DRL trading strategies.
- Score: 9.039809980024852
- License:
- Abstract: Deep reinforcement learning (DRL) has revolutionized quantitative trading (Q-trading) by achieving decent performance without significant human expert knowledge. Despite its achievements, we observe that the current state-of-the-art DRL models are still ineffective in identifying the market trends, causing them to miss good trading opportunities or suffer from large drawdowns when encountering market crashes. To address this limitation, a natural approach is to incorporate human expert knowledge in identifying market trends. Whereas, such knowledge is abstract and hard to be quantified. In order to effectively leverage abstract human expert knowledge, in this paper, we propose a universal logic-guided deep reinforcement learning framework for Q-trading, called Logic-Q. In particular, Logic-Q adopts the program synthesis by sketching paradigm and introduces a logic-guided model design that leverages a lightweight, plug-and-play market trend-aware program sketch to determine the market trend and correspondingly adjusts the DRL policy in a post-hoc manner. Extensive evaluations of two popular quantitative trading tasks demonstrate that Logic-Q can significantly improve the performance of previous state-of-the-art DRL trading strategies.
Related papers
- Risk-averse policies for natural gas futures trading using distributional reinforcement learning [0.0]
This paper studies the effectiveness of three distributional RL algorithms for natural gas futures trading.
To the best of our knowledge, these algorithms have never been applied in a trading context.
We show that training C51 and IQN to maximize CVaR produces risk-sensitive policies with adjustable risk aversion.
arXiv Detail & Related papers (2025-01-08T11:11:25Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
Reinforcement Learning (RL) is a branch of machine learning where agents learn by interacting with their environment.
This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for High-Frequency Trading (HFT) scenarios.
Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns.
arXiv Detail & Related papers (2023-09-13T06:15:40Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
This paper presents a model to generate profitable trades in the stock market using Deep Reinforcement Learning (DRL) algorithms.
We formulate the trading problem as a Partially Observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market.
We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm reporting a 2.68 Sharpe Ratio on unseen data set.
arXiv Detail & Related papers (2022-07-05T11:34:29Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - An Application of Deep Reinforcement Learning to Algorithmic Trading [4.523089386111081]
This scientific research paper presents an innovative approach based on deep reinforcement learning (DRL) to solve the algorithmic trading problem.
It proposes a novel DRL trading strategy so as to maximise the resulting Sharpe ratio performance indicator on a broad range of stock markets.
The training of the resulting reinforcement learning (RL) agent is entirely based on the generation of artificial trajectories from a limited set of stock market historical data.
arXiv Detail & Related papers (2020-04-07T14:57:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.