論文の概要: The Program Testing Ability of Large Language Models for Code
- arxiv url: http://arxiv.org/abs/2310.05727v1
- Date: Mon, 9 Oct 2023 13:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 04:40:39.700576
- Title: The Program Testing Ability of Large Language Models for Code
- Title(参考訳): コードのための大規模言語モデルのプログラムテスト能力
- Authors: Weimin Xiong, Yiwen Guo, Hao Chen
- Abstract要約: CodeXやCodeT5+のようなコードのための大きな言語モデル(LLM)は、コードインテリジェンスを達成する上で大きな可能性を実証しています。
本稿では、これらのモデルの興味深い特性のシリーズを示し、LLMのプログラムテスト能力をいかに改善できるかを示す。
- 参考スコア(独自算出の注目度): 27.590499335039972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent development of large language models (LLMs) for code like CodeX and
CodeT5+ demonstrates tremendous promise in achieving code intelligence. Their
ability of synthesizing code that completes a program for performing a
pre-defined task has been intensively tested and verified on benchmark datasets
including HumanEval and MBPP. Yet, evaluation of these LLMs from more
perspectives (than just program synthesis) is also anticipated, considering
their broad scope of applications in software engineering. In this paper, we
explore the ability of LLMs for testing programs/code. By performing thorough
analyses of recent LLMs for code in program testing, we show a series of
intriguing properties of these models and demonstrate how program testing
ability of LLMs can be improved. Following recent work which utilizes generated
test cases to enhance program synthesis, we further leverage our findings in
improving the quality of the synthesized programs and show +11.77% and +4.22%
higher code pass rates on HumanEval+ comparing with the GPT-3.5-turbo baseline
and the recent state-of-the-art, respectively.
- Abstract(参考訳): CodeXやCodeT5+のようなコードのための大規模言語モデル(LLM)の最近の開発は、コードインテリジェンスを達成する上で非常に有望である。
事前に定義されたタスクを実行するプログラムを完了したコードを合成する能力は、HumanEvalやMBPPといったベンチマークデータセット上で集中的にテストされ、検証されている。
しかし、ソフトウェア工学における幅広い応用範囲を考慮すると、(プログラム合成だけでなく)より広い視点からこれらのllmの評価も期待されている。
本稿では,LLMのプログラム/コードテスト能力について検討する。
プログラムテストにおけるコードに対する最近のLCMの徹底的な解析を行うことにより、これらのモデルの興味深い特性のシリーズを示し、LCMのプログラムテスト能力をいかに改善できるかを示す。
生成したテストケースをプログラム合成に活用した最近の研究により,合成プログラムの品質がさらに向上し,gpt-3.5-turboベースラインと最新のstate-of-the-artと比較して,ヒューマネバル+において+11.77%,+4.22%高いコードパス率を示した。
関連論文リスト
- UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示してきたが、コード生成は依然として大きな課題である。
私たちは、モデル生成ユニットテストを活用してコード生成プロセスのガイドと検証を行う、システマティックパイプラインであるUnitCoderを紹介します。
我々の研究は、モデル生成単体テストを利用して、事前学習コーパスから高品質なコードデータの合成を誘導するスケーラブルなアプローチを提案する。
論文 参考訳(メタデータ) (2025-02-17T05:37:02Z) - Precision or Peril: Evaluating Code Quality from Quantized Large Language Models [0.5249805590164902]
量子化は、大規模言語モデルのメモリオーバーヘッドを軽減する手段として登場した。
本研究の目的は、様々なメトリクスを用いて、より小さなLCMのコード生成能力を評価することである。
論文 参考訳(メタデータ) (2024-11-16T01:31:29Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
大規模言語モデル(LLM)は、コード生成において顕著なブレークスルーを示している。
最近の研究は、いくつかの強力なLLMによって生成された合成データをトレーニングすることで、コードLLMを改善している。
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code [34.03774442237902]
コード関連アプリケーションに適用される大規模言語モデルは、顕著な分野として現れている。
既存の評価ベンチマーク(HumanEval、MBPPなど)は、もはやその能力を評価するには不十分である。
コードに対するLLMの包括的で汚染のない評価手法であるLiveCodeBenchを提案する。
論文 参考訳(メタデータ) (2024-03-12T17:58:04Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large
Language Models for Program Testing [27.45301385265713]
単体テスト合成のためのLLMの高度化が可能な大規模データセットUniTSynを提案する。
Language Server Protocolを活用することで、UniSynは、プロジェクトごとの実行セットアップや言語ごとのセットアップなしでフォーカス-テストペアを収集するという挑戦的な目標を達成する。
実験により、UniTSynをベースとした自己回帰モデルを構築することにより、単体テスト表現の学習と理解において大きなメリットが得られます。
論文 参考訳(メタデータ) (2024-02-04T22:48:05Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - LLM4TDD: Best Practices for Test Driven Development Using Large Language
Models [0.76146285961466]
本稿では,LLM4TDDの概念を考察し,テスト駆動開発手法を用いて大規模言語モデルを用いてコードを反復的に生成する手法を提案する。
本稿では,ChatGPTとLeetCodeのコーディング問題を用いて実験的な評価を行い,LLM4TDDの有効性に対するテスト,プロンプト,問題属性の影響について検討する。
論文 参考訳(メタデータ) (2023-12-07T20:37:54Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。