Isolation of Single Donors in ZnO
- URL: http://arxiv.org/abs/2310.05806v3
- Date: Wed, 17 Jan 2024 21:55:34 GMT
- Title: Isolation of Single Donors in ZnO
- Authors: Ethan R. Hansen, Vasileios Niaouris, Bethany E. Matthews, Christian
Zimmermann, Xingyi Wang, Roman Kolodka, Lasse Vines, Steven R. Spurgeon,
Kai-Mei C. Fu
- Abstract summary: The shallow donor in zinc oxide (ZnO) is a promising semiconductor spin qubit with optical access.
Single indium donors are isolated in a commercialO substrate using plasma focused ion beam (PFIB) milling.
- Score: 0.5500796511783379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The shallow donor in zinc oxide (ZnO) is a promising semiconductor spin qubit
with optical access. Single indium donors are isolated in a commercial ZnO
substrate using plasma focused ion beam (PFIB) milling. Quantum emitters are
identified optically by spatial and frequency filtering. The indium donor
assignment is based on the optical bound exciton transition energy and magnetic
dependence. The single donor emission is intensity and frequency stable with a
transition linewidth less than twice the lifetime limit. The isolation of
optically stable single donors post-FIB fabrication is promising for optical
device integration required for scalable quantum technologies based on single
donors in direct band gap semiconductors.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Contributions to the optical linewidth of shallow donor-bound excitonic
transition in ZnO [0.5737716951558811]
Neutral shallow donors in zinc oxide (ZnO) are spin qubits with optical access via the donor-bound exciton.
We study the donor-bound exciton optical linewidth properties of Al, Ga, and In donors in single-crystalO.
arXiv Detail & Related papers (2023-07-24T07:21:35Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Demultiplexed Single-Photon Source with a Quantum Dot Coupled to
Microresonator [0.0]
We show that dominant recombination through neutral exciton states can be achieved by careful control of the doping profile near an epitGa InAs/As quantum dot placed in a columnar microcavity with distributed Bragg.
Experiments carried out in the fabricated reflectors demonstrate the degree of indistinguishability of 91% of emitted single photons within 242 ns at an efficiency of 10% inside a single-mode optical reflectors.
arXiv Detail & Related papers (2022-11-08T16:21:41Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Coherent Spin Preparation of Indium Donor Qubits in Single ZnO Nanowires [0.0]
We show that donor-bound exciton optical and electron spin properties are retained in isolated donorO nanowires.
The two-photon width approaches the theoretical limit expected due to the hyperfine interaction between the indium nuclear spin and the donor-bound electron.
arXiv Detail & Related papers (2021-10-26T17:37:41Z) - Deterministic photon storage and readout in a semimagnetic
quantum-dot--cavity system doped with a single Mn ion [0.0]
We propose a single-photon buffering device composed of a quantum dot doped with a single Mn atom in a cavity.
We present a method to detain a single cavity photon as an excitation of the dot.
Results indicate the possibility to suspend a photon for almost two orders of magnitude longer than the lifetime of the bright exciton.
arXiv Detail & Related papers (2021-10-14T17:39:27Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.