論文の概要: QE-BEV: Query Evolution for Bird's Eye View Object Detection in Varied Contexts
- arxiv url: http://arxiv.org/abs/2310.05989v3
- Date: Thu, 25 Jul 2024 06:02:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 19:56:25.674585
- Title: QE-BEV: Query Evolution for Bird's Eye View Object Detection in Varied Contexts
- Title(参考訳): QE-BEV:潜伏した状況下での鳥の視線オブジェクト検出のためのクエリ進化
- Authors: Jiawei Yao, Yingxin Lai, Hongrui Kou, Tong Wu, Ruixi Liu,
- Abstract要約: 3Dオブジェクト検出は、自律走行とロボット工学において重要な役割を担い、バードアイビュー(Bird's Eye View, BEV)の画像の正確な解釈を要求する。
動的クエリ進化戦略を利用して,K平均とTop-Kアテンション機構を利用するフレームワークを提案する。
本評価では,クエリに基づくBEVオブジェクト検出の領域に新たなベンチマークを設定することにより,検出精度が著しく向上したことを示す。
- 参考スコア(独自算出の注目度): 2.949710700293865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection plays a pivotal role in autonomous driving and robotics, demanding precise interpretation of Bird's Eye View (BEV) images. The dynamic nature of real-world environments necessitates the use of dynamic query mechanisms in 3D object detection to adaptively capture and process the complex spatio-temporal relationships present in these scenes. However, prior implementations of dynamic queries have often faced difficulties in effectively leveraging these relationships, particularly when it comes to integrating temporal information in a computationally efficient manner. Addressing this limitation, we introduce a framework utilizing dynamic query evolution strategy, harnesses K-means clustering and Top-K attention mechanisms for refined spatio-temporal data processing. By dynamically segmenting the BEV space and prioritizing key features through Top-K attention, our model achieves a real-time, focused analysis of pertinent scene elements. Our extensive evaluation on the nuScenes and Waymo dataset showcases a marked improvement in detection accuracy, setting a new benchmark in the domain of query-based BEV object detection. Our dynamic query evolution strategy has the potential to push the boundaries of current BEV methods with enhanced adaptability and computational efficiency. Project page: https://github.com/Jiawei-Yao0812/QE-BEV
- Abstract(参考訳): 3Dオブジェクト検出は、自律走行とロボット工学において重要な役割を担い、バードアイビュー(Bird's Eye View, BEV)の画像の正確な解釈を要求する。
実世界の環境のダイナミックな性質は、これらのシーンに存在する複雑な時空間関係を適応的にキャプチャし処理するために、3次元オブジェクト検出に動的クエリ機構を使う必要がある。
しかしながら、動的クエリの以前の実装は、特に時間的情報を計算的に効率的に統合することに関して、これらの関係を効果的に活用することの難しさに直面していることが多い。
この制限に対処するため、動的クエリ進化戦略を利用したフレームワークを導入し、K平均クラスタリングとTop-Kアテンション機構を改良した時空間データ処理に適用する。
BEV空間を動的にセグメンテーションし、Top-Kによる重要な特徴の優先順位付けを行うことで、我々のモデルは、関連するシーン要素をリアルタイムに集中的に分析する。
nuScenesとWaymoデータセットに関する広範な評価では、検出精度が大幅に向上し、クエリベースのBEVオブジェクト検出の領域に新たなベンチマークが設定された。
我々の動的クエリ進化戦略は、適応性と計算効率を向上した現行のBEV手法の境界を推し進める可能性がある。
プロジェクトページ:https://github.com/Jiawei-Yao0812/QE-BEV
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - A Modern Take on Visual Relationship Reasoning for Grasp Planning [10.543168383800532]
本稿では,視覚的リレーショナル推論による把握計画を提案する。
D3GDは、97の異なるカテゴリから最大35のオブジェクトを持つビンピックシーンを含む、新しいテストベッドである。
また、新しいエンドツーエンドのトランスフォーマーベースの依存性グラフ生成モデルであるD3Gを提案する。
論文 参考訳(メタデータ) (2024-09-03T16:30:48Z) - Learn to Memorize and to Forget: A Continual Learning Perspective of Dynamic SLAM [17.661231232206028]
暗黙的な神経表現を伴う同時局所化とマッピング(SLAM)が注目されている。
動的環境のための新しいSLAMフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-18T09:35:48Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV)は、自律走行車(AV)における視覚知覚のための最も広く使われているシーンの1つである。
近年の拡散法は、視覚知覚のための不確実性モデリングに有望なアプローチを提供するが、BEVの広い範囲において、小さな物体を効果的に検出することができない。
本稿では,BEVにおける拡散パラダイムと最先端の3Dオブジェクト検出器を組み合わせることで,この問題に対処する。
論文 参考訳(メタデータ) (2023-12-18T09:52:14Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - OCBEV: Object-Centric BEV Transformer for Multi-View 3D Object Detection [29.530177591608297]
マルチビュー3Dオブジェクト検出は、高い有効性と低コストのため、自動運転において人気を博している。
現在の最先端検出器のほとんどは、クエリベースのバードアイビュー(BEV)パラダイムに従っている。
本稿では,移動対象の時間的・空間的手がかりをより効率的に彫ることができるOCBEVを提案する。
論文 参考訳(メタデータ) (2023-06-02T17:59:48Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
Ret3Dと呼ばれるシンプルで効率的で効果的な2段階検出器を導入する。
Ret3Dの中核は、新しいフレーム内およびフレーム間関係モジュールの利用である。
無視できる余分なオーバーヘッドにより、Ret3Dは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-18T03:48:58Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。