Cross-Task Data Augmentation by Pseudo-label Generation for Region Based Coronary Artery Instance Segmentation
- URL: http://arxiv.org/abs/2310.05990v2
- Date: Fri, 19 Jul 2024 05:23:28 GMT
- Title: Cross-Task Data Augmentation by Pseudo-label Generation for Region Based Coronary Artery Instance Segmentation
- Authors: Sandesh Pokhrel, Sanjay Bhandari, Eduard Vazquez, Yash Raj Shrestha, Binod Bhattarai,
- Abstract summary: Coronary Artery Diseases (CADs) although preventable, are one of the leading causes of death and disability.
Due to the limited amount of data and the difficulty in curating a dataset, the task of segmentation has proven challenging.
We introduce the use of pseudo-labels to address the issue of limited data in the angiographic dataset to enhance the performance of the baseline YOLO model.
- Score: 6.611985866622974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary Artery Diseases (CADs) although preventable, are one of the leading causes of death and disability. Diagnosis of these diseases is often difficult and resource intensive. Angiographic imaging segmentation of the arteries has evolved as a tool of assistance that helps clinicians make an accurate diagnosis. However, due to the limited amount of data and the difficulty in curating a dataset, the task of segmentation has proven challenging. In this study, we introduce the use of pseudo-labels to address the issue of limited data in the angiographic dataset to enhance the performance of the baseline YOLO model. Unlike existing data augmentation techniques that improve the model constrained to a fixed dataset, we introduce the use of pseudo-labels generated on a dataset of separate related task to diversify and improve model performance. This method increases the baseline F1 score by 9% in the validation data set and by 3% in the test data set.
Related papers
- Cross-Dataset Generalization For Retinal Lesions Segmentation [2.1160877779256126]
This study characterizes several known datasets and compares different techniques that have been proposed to enhance the generalisation performance of a model.
Our results provide insights into how to combine coarsely labelled data with a finely-grained dataset in order to improve the lesions segmentation.
arXiv Detail & Related papers (2024-05-14T05:52:01Z) - Domain-invariant Clinical Representation Learning by Bridging Data
Distribution Shift across EMR Datasets [16.317118701435742]
An effective prognostic model is expected to assist doctors in making right diagnosis and designing personalized treatment plan.
In the early stage of a disease, limited data collection and clinical experiences, plus the concern out of privacy and ethics, may result in restricted data availability for reference.
This article introduces a domain-invariant representation learning method to build a transition model from source dataset to target dataset.
arXiv Detail & Related papers (2023-10-11T18:32:21Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
We study the effectiveness of data and model scaling and cross-dataset knowledge transfer in a real-world pathology classification task.
We identify the challenges of possible negative transfer and emphasize the significance of some key components.
Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
arXiv Detail & Related papers (2023-09-19T20:09:15Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.