Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training
- URL: http://arxiv.org/abs/2106.08616v2
- Date: Thu, 17 Jun 2021 09:25:31 GMT
- Title: Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training
- Authors: Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-Ming Wu, Albert Y.S.
Lam
- Abstract summary: Out-of-scope intent detection is of practical importance in task-oriented dialogue systems.
We propose a method to train an out-of-scope intent classifier in a fully end-to-end manner by simulating the test scenario in training.
We evaluate our method extensively on four benchmark dialogue datasets and observe significant improvements over state-of-the-art approaches.
- Score: 20.242645823965145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-scope intent detection is of practical importance in task-oriented
dialogue systems. Since the distribution of outlier utterances is arbitrary and
unknown in the training stage, existing methods commonly rely on strong
assumptions on data distribution such as mixture of Gaussians to make
inference, resulting in either complex multi-step training procedures or
hand-crafted rules such as confidence threshold selection for outlier
detection. In this paper, we propose a simple yet effective method to train an
out-of-scope intent classifier in a fully end-to-end manner by simulating the
test scenario in training, which requires no assumption on data distribution
and no additional post-processing or threshold setting. Specifically, we
construct a set of pseudo outliers in the training stage, by generating
synthetic outliers using inliner features via self-supervision and sampling
out-of-scope sentences from easily available open-domain datasets. The pseudo
outliers are used to train a discriminative classifier that can be directly
applied to and generalize well on the test task. We evaluate our method
extensively on four benchmark dialogue datasets and observe significant
improvements over state-of-the-art approaches. Our code has been released at
https://github.com/liam0949/DCLOOS.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Quantile-based Maximum Likelihood Training for Outlier Detection [5.902139925693801]
We introduce a quantile-based maximum likelihood objective for learning the inlier distribution to improve the outlier separation during inference.
Our approach fits a normalizing flow to pre-trained discriminative features and detects the outliers according to the evaluated log-likelihood.
arXiv Detail & Related papers (2023-08-20T22:27:54Z) - DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers [21.741026088202126]
We propose a novel way to certify the robustness of pretrained models using only a few training samples.
Our proposed approach generates class-boundary and interpolated samples corresponding to each training sample.
We obtain significant improvements over the baseline on multiple benchmark datasets and also report similar performance under the challenging black box setup.
arXiv Detail & Related papers (2022-10-17T10:41:18Z) - Self-Training: A Survey [5.772546394254112]
Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.
Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.
We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
arXiv Detail & Related papers (2022-02-24T11:40:44Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z) - Discriminative Nearest Neighbor Few-Shot Intent Detection by
Transferring Natural Language Inference [150.07326223077405]
Few-shot learning is attracting much attention to mitigate data scarcity.
We present a discriminative nearest neighbor classification with deep self-attention.
We propose to boost the discriminative ability by transferring a natural language inference (NLI) model.
arXiv Detail & Related papers (2020-10-25T00:39:32Z) - Self-training Improves Pre-training for Natural Language Understanding [63.78927366363178]
We study self-training as another way to leverage unlabeled data through semi-supervised learning.
We introduce SentAugment, a data augmentation method which computes task-specific query embeddings from labeled data.
Our approach leads to scalable and effective self-training with improvements of up to 2.6% on standard text classification benchmarks.
arXiv Detail & Related papers (2020-10-05T17:52:25Z) - Improved Robustness to Open Set Inputs via Tempered Mixup [37.98372874213471]
We propose a simple regularization technique that improves open set robustness without a background dataset.
Our method achieves state-of-the-art results on open set classification baselines and easily scales to large-scale open set classification problems.
arXiv Detail & Related papers (2020-09-10T04:01:31Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z) - Hybrid Models for Open Set Recognition [28.62025409781781]
Open set recognition requires a classifier to detect samples not belonging to any of the classes in its training set.
We propose OpenHybrid, which is composed of an encoder to encode the input data into a joint embedding space, a classifier to classify samples to inlier classes, and a flow-based density estimator.
Experiments on standard open set benchmarks reveal that an end-to-end trained OpenHybrid model significantly outperforms state-of-the-art methods and flow-based baselines.
arXiv Detail & Related papers (2020-03-27T16:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.