GPT-who: An Information Density-based Machine-Generated Text Detector
- URL: http://arxiv.org/abs/2310.06202v3
- Date: Wed, 3 Apr 2024 18:59:10 GMT
- Title: GPT-who: An Information Density-based Machine-Generated Text Detector
- Authors: Saranya Venkatraman, Adaku Uchendu, Dongwon Lee,
- Abstract summary: We propose GPT-who, the first psycholinguistically-inspired domain-agnostic statistical detector.
This detector employs UID-based features to model the unique statistical signature of each Large Language Models (LLMs)-generated and human-generated texts.
We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible.
- Score: 6.111161457447324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Uniform Information Density (UID) principle posits that humans prefer to spread information evenly during language production. We examine if this UID principle can help capture differences between Large Language Models (LLMs)-generated and human-generated texts. We propose GPT-who, the first psycholinguistically-inspired domain-agnostic statistical detector. This detector employs UID-based features to model the unique statistical signature of each LLM and human author for accurate detection. We evaluate our method using 4 large-scale benchmark datasets and find that GPT-who outperforms state-of-the-art detectors (both statistical- & non-statistical) such as GLTR, GPTZero, DetectGPT, OpenAI detector, and ZeroGPT by over $20$% across domains. In addition to better performance, it is computationally inexpensive and utilizes an interpretable representation of text articles. We find that GPT-who can distinguish texts generated by very sophisticated LLMs, even when the overlying text is indiscernible. UID-based measures for all datasets and code are available at https://github.com/saranya-venkatraman/gpt-who.
Related papers
- DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios [38.952481877244644]
We present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task.
Our development of DetectRL reveals the strengths and limitations of current SOTA detectors.
We believe DetectRL could serve as an effective benchmark for assessing detectors in real-world scenarios.
arXiv Detail & Related papers (2024-10-31T09:01:25Z) - DetectGPT-SC: Improving Detection of Text Generated by Large Language
Models through Self-Consistency with Masked Predictions [13.077729125193434]
Existing detectors are built on the assumption that there is a distribution gap between human-generated and AI-generated texts.
We find that large language models such as ChatGPT exhibit strong self-consistency in text generation and continuation.
We propose a new method for AI-generated texts detection based on self-consistency with masked predictions.
arXiv Detail & Related papers (2023-10-23T01:23:10Z) - Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text
via Conditional Probability Curvature [36.31281981509264]
Large language models (LLMs) have shown the ability to produce fluent and cogent content.
To build trustworthy AI systems, it is imperative to distinguish between machine-generated and human-authored content.
Fast-DetectGPT is an optimized zero-shot detector that substitutes DetectGPT's perturbation step with a more efficient sampling step.
arXiv Detail & Related papers (2023-10-08T11:41:28Z) - DNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of
GPT-Generated Text [82.5469544192645]
We propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT)
By analyzing the differences between the original and new remaining parts through N-gram analysis, we unveil significant discrepancies between the distribution of machine-generated text and human-written text.
Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text.
arXiv Detail & Related papers (2023-05-27T03:58:29Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z) - Smaller Language Models are Better Black-box Machine-Generated Text
Detectors [56.36291277897995]
Small and partially-trained models are better universal text detectors.
We find that whether the detector and generator were trained on the same data is not critically important to the detection success.
For instance, the OPT-125M model has an AUC of 0.81 in detecting ChatGPT generations, whereas a larger model from the GPT family, GPTJ-6B, has AUC of 0.45.
arXiv Detail & Related papers (2023-05-17T00:09:08Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - Paraphrasing evades detectors of AI-generated text, but retrieval is an
effective defense [56.077252790310176]
We present a paraphrase generation model (DIPPER) that can paraphrase paragraphs, condition on surrounding context, and control lexical diversity and content reordering.
Using DIPPER to paraphrase text generated by three large language models (including GPT3.5-davinci-003) successfully evades several detectors, including watermarking.
We introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider.
arXiv Detail & Related papers (2023-03-23T16:29:27Z) - DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability
Curvature [143.5381108333212]
We show that text sampled from an large language model tends to occupy negative curvature regions of the model's log probability function.
We then define a new curvature-based criterion for judging if a passage is generated from a given LLM.
We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection.
arXiv Detail & Related papers (2023-01-26T18:44:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.