論文の概要: Deep Learning: A Tutorial
- arxiv url: http://arxiv.org/abs/2310.06251v1
- Date: Tue, 10 Oct 2023 01:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-11 21:08:58.227874
- Title: Deep Learning: A Tutorial
- Title(参考訳): deep learning: チュートリアル
- Authors: Nick Polson and Vadim Sokolov
- Abstract要約: 構造化された高次元データに対する洞察を提供する深層学習手法のレビューを行う。
ディープラーニングは、予測ルールを提供するために、セミファイン入力変換のレイヤを使用する。
これらの変換層を適用すると、確率論的統計手法が適用可能な属性(または特徴)の集合が生成される。
- 参考スコア(独自算出の注目度): 0.8158530638728498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our goal is to provide a review of deep learning methods which provide
insight into structured high-dimensional data. Rather than using shallow
additive architectures common to most statistical models, deep learning uses
layers of semi-affine input transformations to provide a predictive rule.
Applying these layers of transformations leads to a set of attributes (or,
features) to which probabilistic statistical methods can be applied. Thus, the
best of both worlds can be achieved: scalable prediction rules fortified with
uncertainty quantification, where sparse regularization finds the features.
- Abstract(参考訳): 我々の目標は、構造化された高次元データに対する洞察を提供するディープラーニング手法のレビューを提供することである。
多くの統計モデルに共通する浅い付加的アーキテクチャを使う代わりに、ディープラーニングは半ファイン入力変換の層を使って予測ルールを提供する。
これらの変換層を適用すると、確率的統計的手法を適用できる属性(または特徴)の集合が生まれる。
したがって、両方の世界の最良のものは、不確実な定量化で強化されたスケーラブルな予測ルールである。
関連論文リスト
- Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
提案手法は,複数の視覚タスクにおけるネットワーク一般化能力を常に改善することを示す。
我々の手法は単純だが有効であり、トレーニング可能なパラメータや損失制約を伴わずにネットワークに容易に統合できる。
論文 参考訳(メタデータ) (2023-01-16T14:25:02Z) - Deep Explainable Learning with Graph Based Data Assessing and Rule
Reasoning [4.369058206183195]
本稿では、ノイズハンドリングにおけるディープモデルの利点とエキスパートルールに基づく解釈可能性を組み合わせたエンドツーエンドのディープ・ツー・エンドのディープ・説明可能な学習手法を提案する。
提案手法は, 工業生産システムにおいて, 予測精度に匹敵し, より高い一般化安定性, より優れた解釈可能性を示す。
論文 参考訳(メタデータ) (2022-11-09T05:58:56Z) - Merging Two Cultures: Deep and Statistical Learning [3.15863303008255]
深層学習と統計的学習の2つの文化を組み合わせることで、構造化された高次元データに対する洞察が得られる。
モデルの出力層における確率的手法を用いて予測,最適化,不確実性を実現できることを示す。
論文 参考訳(メタデータ) (2021-10-22T02:57:21Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Deep learning: a statistical viewpoint [120.94133818355645]
ディープラーニングは、理論的観点からいくつかの大きな驚きを明らかにしました。
特に、簡単な勾配法は、最適でないトレーニング問題に対するほぼ完全な解決策を簡単に見つけます。
我々はこれらの現象を具体的原理で補うと推測する。
論文 参考訳(メタデータ) (2021-03-16T16:26:36Z) - A Probabilistically Motivated Learning Rate Adaptation for Stochastic
Optimization [20.77923050735746]
一般的な一階法に対して,ガウス推論の観点からの確率的動機付けを提供する。
この推論により、トレーニング中に自動的に適応できる無次元量に学習率を関連付けることができる。
得られたメタアルゴリズムは、学習率を幅広い初期値にわたって頑健に適応させることが示される。
論文 参考訳(メタデータ) (2021-02-22T10:26:31Z) - Feature space approximation for kernel-based supervised learning [2.653409741248232]
目標は、トレーニングデータのサイズを減らし、ストレージ消費と計算の複雑さを減らすことだ。
完全トレーニングデータセットを含むデータ駆動予測の計算と比較して,大幅な改善が示された。
本手法は, 画像認識, システム識別, 海洋時系列解析などの異なる応用領域の分類と回帰問題に適用する。
論文 参考訳(メタデータ) (2020-11-25T11:23:58Z) - A Framework to Learn with Interpretation [2.3741312212138896]
本稿では,予測モデルとその関連解釈モデルを共同で学習する新しい枠組みを提案する。
我々は,選択した隠れ層の出力を入力として取り込む,高レベル属性関数の小型辞書を求める。
学習した機能を視覚化する詳細なパイプラインも開発されている。
論文 参考訳(メタデータ) (2020-10-19T09:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。