論文の概要: Discovering Mixtures of Structural Causal Models from Time Series Data
- arxiv url: http://arxiv.org/abs/2310.06312v3
- Date: Sun, 23 Jun 2024 05:15:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 04:48:52.716915
- Title: Discovering Mixtures of Structural Causal Models from Time Series Data
- Title(参考訳): 時系列データから構造因果モデルの混合を発見する
- Authors: Sumanth Varambally, Yi-An Ma, Rose Yu,
- Abstract要約: 基礎となる因果モデルを推測するために, MCD と呼ばれる一般的な変分推論に基づくフレームワークを提案する。
このアプローチでは、データ可能性のエビデンス-ローバウンドを最大化するエンドツーエンドのトレーニングプロセスを採用しています。
本研究では,本手法が因果発見タスクにおける最先端のベンチマークを上回ることを実証する。
- 参考スコア(独自算出の注目度): 23.18511951330646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering causal relationships from time series data is significant in fields such as finance, climate science, and neuroscience. However, contemporary techniques rely on the simplifying assumption that data originates from the same causal model, while in practice, data is heterogeneous and can stem from different causal models. In this work, we relax this assumption and perform causal discovery from time series data originating from a mixture of causal models. We propose a general variational inference-based framework called MCD to infer the underlying causal models as well as the mixing probability of each sample. Our approach employs an end-to-end training process that maximizes an evidence-lower bound for the data likelihood. We present two variants: MCD-Linear for linear relationships and independent noise, and MCD-Nonlinear for nonlinear causal relationships and history-dependent noise. We demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks through extensive experimentation on synthetic and real-world datasets, particularly when the data emanates from diverse underlying causal graphs. Theoretically, we prove the identifiability of such a model under some mild assumptions.
- Abstract(参考訳): 時系列データから因果関係を明らかにすることは、金融、気候科学、神経科学などの分野において重要である。
しかし、現代の技術は、データが同じ因果モデルに由来するという仮定を単純化することに依存しているが、実際には、データは異質であり、異なる因果モデルに由来する可能性がある。
本研究では,この仮定を緩和し,複数の因果モデルから得られた時系列データから因果発見を行う。
そこで本研究では,MCDと呼ばれる一般的な変分推論に基づくフレームワークを提案し,基礎となる因果モデルと各試料の混合確率を推定する。
このアプローチでは、データ可能性のエビデンス-ローバウンドを最大化するエンドツーエンドのトレーニングプロセスを採用しています。
線形関係と独立雑音に対する MCD-Linear と非線形因果関係と履歴依存雑音に対する MCD-Nonlinear の2つの変種を示す。
提案手法は, 多様な因果グラフからデータを抽出する場合に, 合成および実世界のデータセットを広範囲に実験することにより, 因果探索タスクの最先端ベンチマークを上回ることを示す。
理論的には、いくつかの軽微な仮定の下でそのようなモデルの識別可能性を証明する。
関連論文リスト
- Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
任意の因果モデルと異種データに対応する新しいFCD法を提案する。
これらのアプローチには、データのプライバシを保護するために、生データのプロキシとして要約統計を構築することが含まれる。
提案手法の有効性を示すために, 合成および実データを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-02-20T18:53:53Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
我々は、古典因果探索アルゴリズムの出力からより大きな因果グラフを予測することを学ぶ教師付きモデルを訓練する。
我々のアプローチは、古典的手法の出力における典型的なエラーがデータセット間で比較できるという観察によって実現されている。
実データおよび合成データに関する実験では、このモデルが不特定性や分布シフトに直面して高い精度を維持することを示した。
論文 参考訳(メタデータ) (2024-02-02T21:57:58Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
基本的な理論、方法論、欠点、データセット、メトリクスに重点を置いています。
フェアネス、プライバシ、アウト・オブ・ディストリビューションの一般化、精密医療、生物科学における因果生成モデルの応用について述べる。
論文 参考訳(メタデータ) (2023-10-17T05:45:32Z) - De-Biasing Generative Models using Counterfactual Methods [0.0]
我々はCausal Counterfactual Generative Model (CCGM) と呼ばれる新しいデコーダベースのフレームワークを提案する。
提案手法は,因果関係の忠実さを強調するために,因果関係の潜在空間VAEモデルと特定の修正を加えたものである。
因果的学習と符号化/復号化が因果的介入の質をいかに高めるかを検討する。
論文 参考訳(メタデータ) (2022-07-04T16:53:20Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
本稿では, 医療データを調和させる構造因果モデル (SCM) に対して, 反実的推論を行う正規化フローに基づく手法を提案する。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の,大規模な実世界の医療データセットを評価した。
論文 参考訳(メタデータ) (2021-06-12T19:57:35Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
本稿では,時系列データから因果関係を推定する新しいフレームワークであるAmortized Causal Discoveryを提案する。
本研究では,本手法が変分モデルとして実装され,因果発見性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。