論文の概要: Harmonization with Flow-based Causal Inference
- arxiv url: http://arxiv.org/abs/2106.06845v1
- Date: Sat, 12 Jun 2021 19:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-19 15:04:11.435754
- Title: Harmonization with Flow-based Causal Inference
- Title(参考訳): フローベース因果推論による調和
- Authors: Rongguang Wang, Pratik Chaudhari, Christos Davatzikos
- Abstract要約: 本稿では, 医療データを調和させる構造因果モデル (SCM) に対して, 反実的推論を行う正規化フローに基づく手法を提案する。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の,大規模な実世界の医療データセットを評価した。
- 参考スコア(独自算出の注目度): 12.739380441313022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneity in medical data, e.g., from data collected at different sites
and with different protocols in a clinical study, is a fundamental hurdle for
accurate prediction using machine learning models, as such models often fail to
generalize well. This paper presents a normalizing-flow-based method to perform
counterfactual inference upon a structural causal model (SCM) to harmonize such
data. We formulate a causal model for observed effects (brain magnetic
resonance imaging data) that result from known confounders (site, gender and
age) and exogenous noise variables. Our method exploits the bijection induced
by flow for harmonization. We can infer the posterior of exogenous variables,
intervene on observations, and draw samples from the resultant SCM to obtain
counterfactuals. We evaluate on multiple, large, real-world medical datasets to
observe that this method leads to better cross-domain generalization compared
to state-of-the-art algorithms. Further experiments that evaluate the quality
of confounder-independent data generated by our model using regression and
classification tasks are provided.
- Abstract(参考訳): 医学データにおける不均一性(例えば、臨床研究において異なる場所で収集されたデータと異なるプロトコルから)は、機械学習モデルを用いて正確な予測を行うための基本的なハードルである。
本稿では,構造因果モデル (SCM) に反実的推論を施し,そのようなデータを調和させる正規化フローに基づく手法を提案する。
我々は、既知の共同創設者(サイト、性別、年齢)と外因性ノイズ変数から生じる観察効果(脳磁気共鳴画像データ)の因果モデルを作成する。
本手法は流れによって引き起こされる単射を調和に利用する。
我々は,外因性変数の後部を推測し,観察に介入し,結果のSCMからサンプルを抽出して反事実を得る。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の大規模実世界の医療データセットを評価した。
回帰および分類タスクを用いて,本モデルが生成する共起独立データの品質を評価する実験を行った。
関連論文リスト
- Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
本稿では,データセットに固有の不均衡を,合成データの生成によって緩和する手法を提案する。
我々は,患者メタデータと心臓の形状から合成したテキストを条件に,拡散確率モデルに基づく制御ネットを採用する。
本実験は,データセットの不均衡を緩和する手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2024-03-28T15:41:43Z) - Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand [9.460857822923842]
観測データからの因果推論は、信頼できる機械学習における多くの応用において重要な役割を果たす。
任意の因果グラフを与えられた任意の介入分布からサンプリングする方法を示す。
またテキストと画像変数を含むMIMIC-CXRデータセットから高次元干渉サンプルを生成する。
論文 参考訳(メタデータ) (2024-02-12T05:48:31Z) - Discovering Mixtures of Structural Causal Models from Time Series Data [23.18511951330646]
基礎となる因果モデルを推測するために, MCD と呼ばれる一般的な変分推論に基づくフレームワークを提案する。
このアプローチでは、データ可能性のエビデンス-ローバウンドを最大化するエンドツーエンドのトレーニングプロセスを採用しています。
本研究では,本手法が因果発見タスクにおける最先端のベンチマークを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-10T05:13:10Z) - Data Augmentation for Seizure Prediction with Generative Diffusion Model [26.967247641926814]
重症度予測は患者の生活改善に非常に重要である。
初期データと中間データの間の深刻な不均衡問題は、依然として大きな課題となっている。
データ拡張は、この問題を解決するための直感的な方法です。
DiffEEGと呼ばれる拡散モデルを用いた新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T05:44:53Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
本稿では,観測画像データから因果構造を推定する作業について考察する。
Diff-SCMは,近年の発電エネルギーモデルの発展を基盤とした構造因果モデルである。
Diff-SCMはMNISTデータに基づくベースラインよりも現実的で最小限のデファクトアルを生成しており、ImageNetデータにも適用可能である。
論文 参考訳(メタデータ) (2022-02-21T12:23:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。