Better Safe than Sorry: Recovering after Adversarial Majority
- URL: http://arxiv.org/abs/2310.06338v2
- Date: Fri, 3 Nov 2023 18:55:25 GMT
- Title: Better Safe than Sorry: Recovering after Adversarial Majority
- Authors: Srivatsan Sridhar, Dionysis Zindros, David Tse,
- Abstract summary: In a synchronous network, it is possible to maintain safety for all clients even during adversarial majority, and recover liveness after honest majority is restored.
Our solution takes the form of a recovery gadget that can be applied to any protocol with certificates.
- Score: 8.804839990789967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The security of blockchain protocols is a combination of two properties: safety and liveness. It is well known that no blockchain protocol can provide both to sleepy (intermittently online) clients under adversarial majority. However, safety is more critical in that a single safety violation can cause users to lose money. At the same time, liveness must not be lost forever. We show that, in a synchronous network, it is possible to maintain safety for all clients even during adversarial majority, and recover liveness after honest majority is restored. Our solution takes the form of a recovery gadget that can be applied to any protocol with certificates (such as HotStuff, Streamlet, Tendermint, and their variants).
Related papers
- Tyche: Collateral-Free Coalition-Resistant Multiparty Lotteries with Arbitrary Payouts [23.27199615640474]
We propose Tyche, a family of protocols for performing efficient multiparty lotteries.
Our protocols are based on a commit-and-reveal approach, requiring only a collision-resistant hash function.
We show that our protocols are secure, fair, and some preserve the participants' privacy.
arXiv Detail & Related papers (2024-09-05T12:19:37Z) - Remote Staking with Economic Safety [9.685926828113631]
Proof-of-stake (PoS) blockchains require validators to lock their tokens as collateral, slashing these tokens if they are identified as protocol violators.
In this paper, we present the first known remote staking protocols with guaranteed optimal economic safety.
arXiv Detail & Related papers (2024-08-04T01:39:06Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - A Multi-Party, Multi-Blockchain Atomic Swap Protocol with Universal Adaptor Secret [2.850220538113752]
This paper presents a novel multi-party atomic swap protocol that operates almost entirely off-chain.
By addressing key challenges such as collusion attacks and malicious dropouts, our protocol significantly enhances the security and efficiency of multi-party atomic swaps.
arXiv Detail & Related papers (2024-06-24T17:33:03Z) - Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability [61.549465258257115]
We propose a novel and severer backdoor attack, TransTroj, which enables the backdoors embedded in PTMs to efficiently transfer in the model supply chain.
Experimental results show that our method significantly outperforms SOTA task-agnostic backdoor attacks.
arXiv Detail & Related papers (2024-01-29T04:35:48Z) - DeFi Security: Turning The Weakest Link Into The Strongest Attraction [0.0]
There are many ongoing hacks and security concerns in the DeFi space right now.
The Safe-House is a piece of engineering sophistication that utilizes existing blockchain principles.
The amount of funds at risk from both internal and external parties -- and hence the maximum one time loss -- is guaranteed to stay within the specified limits.
arXiv Detail & Related papers (2023-11-20T09:58:48Z) - Robust and Actively Secure Serverless Collaborative Learning [48.01929996757643]
Collaborative machine learning (ML) is widely used to enable institutions to learn better models from distributed data.
While collaborative approaches to learning intuitively protect user data, they remain vulnerable to either the server, the clients, or both.
We propose a peer-to-peer (P2P) learning scheme that is secure against malicious servers and robust to malicious clients.
arXiv Detail & Related papers (2023-10-25T14:43:03Z) - A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness for Enhanced Performance [5.344231997803284]
Existing protocols overlook diverse adversarial attacks, limiting transaction throughput.
This paper presents Reticulum, a groundbreaking sharding protocol addressing this issue.
It comprises "control" and "process" shards in two layers.
arXiv Detail & Related papers (2023-10-17T16:15:28Z) - Blockchain-based Secure Client Selection in Federated Learning [18.001794899303626]
We use blockchain technology to propose a verifiable client selection protocol for Federated Learning.
Our protocol enforces a random selection of clients, making the server unable to control the selection process at its discretion.
We present security proofs showing that our protocol is secure against this attack.
arXiv Detail & Related papers (2022-05-11T16:28:12Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - Towards Bidirectional Protection in Federated Learning [70.36925233356335]
F2ED-LEARNING offers bidirectional defense against malicious centralized server and Byzantine malicious clients.
F2ED-LEARNING securely aggregates each shard's update and launches FilterL2 on updates from different shards.
evaluation shows that F2ED-LEARNING consistently achieves optimal or close-to-optimal performance.
arXiv Detail & Related papers (2020-10-02T19:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.