論文の概要: SpikeCLIP: A Contrastive Language-Image Pretrained Spiking Neural Network
- arxiv url: http://arxiv.org/abs/2310.06488v3
- Date: Tue, 10 Sep 2024 06:36:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 23:44:54.863868
- Title: SpikeCLIP: A Contrastive Language-Image Pretrained Spiking Neural Network
- Title(参考訳): SpikeCLIP: コントラスト言語による事前訓練型スパイクニューラルネットワーク
- Authors: Tianlong Li, Wenhao Liu, Changze Lv, Yufei Gu, Jianhan Xu, Cenyuan Zhang, Muling Wu, Xiaoqing Zheng, Xuanjing Huang,
- Abstract要約: 従来のニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が登場した。
本稿ではスパイクベースの計算におけるモダリティギャップを埋める新しいフレームワークであるSpikeCLIPを提案する。
- 参考スコア(独自算出の注目度): 39.54624592783459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) have emerged as a promising alternative to conventional Artificial Neural Networks (ANNs), demonstrating comparable performance in both visual and linguistic tasks while offering the advantage of improved energy efficiency. Despite these advancements, the integration of linguistic and visual features into a unified representation through spike trains poses a significant challenge, and the application of SNNs to multimodal scenarios remains largely unexplored. This paper presents SpikeCLIP, a novel framework designed to bridge the modality gap in spike-based computation. Our approach employs a two-step recipe: an ``alignment pre-training'' to align features across modalities, followed by a ``dual-loss fine-tuning'' to refine the model's performance. Extensive experiments reveal that SNNs achieve results on par with ANNs while substantially reducing energy consumption across various datasets commonly used for multimodal model evaluation. Furthermore, SpikeCLIP maintains robust image classification capabilities, even when dealing with classes that fall outside predefined categories. This study marks a significant advancement in the development of energy-efficient and biologically plausible multimodal learning systems.
- Abstract(参考訳): 従来のニューラルネットワーク(ANN)に代わる有望な代替手段としてスパイキングニューラルネットワーク(SNN)が登場し、視覚的タスクと言語的タスクの両方で同等のパフォーマンスを示しながら、エネルギー効率の向上を享受している。
これらの進歩にもかかわらず、言語的特徴と視覚的特徴をスパイク列車による統一表現に統合することは大きな課題となり、SNNのマルチモーダルシナリオへの応用は未解明のままである。
本稿ではスパイクベースの計算におけるモダリティギャップを埋める新しいフレームワークであるSpikeCLIPを提案する。
我々のアプローチでは、2段階のレシピが採用されている:「アライメント事前学習」は、モダリティにまたがる特徴を調整し、続いてモデルの性能を洗練させる「ダールロス微調整」である。
大規模な実験により、SNNはANNと同等の結果を得るとともに、マルチモーダルモデル評価によく使用される様々なデータセットのエネルギー消費量を大幅に削減することがわかった。
さらに、SpikeCLIPは、事前に定義されたカテゴリの外にあるクラスを扱う場合でも、堅牢な画像分類機能を維持している。
本研究は,エネルギー効率・生物学的に妥当なマルチモーダル学習システムの開発において,重要な進展を示すものである。
関連論文リスト
- Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning [4.462334751640166]
Meta-sparsityは、ディープニューラルネットワーク(DNN)がマルチタスク学習環境で最適なスパース共有構造を生成することを可能にする、モデルのスパーシティを学習するためのフレームワークである。
Model Agnostic Meta-Learning (MAML)に触発され、マルチタスクシナリオにおける共有パラメータと最適なスパースパラメータの学習に重点を置いている。
メタスパーシティーの有効性は、2つのデータセットに対する広範な実験によって厳格に評価されている。
論文 参考訳(メタデータ) (2025-01-21T13:25:32Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Weight Sparsity Complements Activity Sparsity in Neuromorphic Language Models [3.0753589871055107]
イベントベースニューラルネットワーク(SNN)は自然に活動の疎結合を示し、重みを刈り取ることで接続性を疎結合化するために多くの方法が存在する。
本研究では,重み付けと活動空間の相乗効果が言語モデリングタスクに及ぼす影響について検討する。
この結果から,疎結合なイベントベースニューラルネットワークは効率的かつ効率的なシーケンスモデリングの候補となる可能性が示唆された。
論文 参考訳(メタデータ) (2024-05-01T10:33:36Z) - NeuroPrune: A Neuro-inspired Topological Sparse Training Algorithm for Large Language Models [35.10729451729596]
自然言語処理(NLP)におけるトランスフォーマーベース言語モデルの普及
しかし、高価なトレーニングや推論は、その適用性に重大な障害となる。
脳神経ネットワークにインスパイアされた我々は、ネットワークトポロジーのレンズを通してスパーシティアプローチを探索する。
論文 参考訳(メタデータ) (2024-02-28T22:21:47Z) - Artificial-Spiking Hierarchical Networks for Vision-Language
Representation Learning [16.902924543372713]
最先端の手法は、大規模データセットの事前トレーニングによって、素晴らしいパフォーマンスを達成する。
本稿では,新しい視覚的セマンティックモジュールを導入することで,マルチモーダルアライメントのための効率的なフレームワークを提案する。
実験の結果、提案されたASH-Netsは競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-18T10:40:25Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Ensemble plasticity and network adaptability in SNNs [0.726437825413781]
人工スパイキングニューラルネットワーク(ASNN)は、離散的なイベントベース(スパイク)計算のため、より優れた情報処理効率を約束する。
本研究では,スパイク活動のみを用いたエントロピーとネットワークアクティベーションに基づく新しいアンサンブル学習手法を提案する。
その結果, スパイクレートの低いニューロンクラスターを刈り取ると, 一般化や性能の低下が予想されることがわかった。
論文 参考訳(メタデータ) (2022-03-11T01:14:51Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。