A quantum algorithm for solving 0-1 Knapsack problems
- URL: http://arxiv.org/abs/2310.06623v2
- Date: Tue, 19 Nov 2024 10:06:50 GMT
- Title: A quantum algorithm for solving 0-1 Knapsack problems
- Authors: Sören Wilkening, Andreea-Iulia Lefterovici, Lennart Binkowski, Michael Perk, Sándor Fekete, Tobias J. Osborne,
- Abstract summary: We introduce the "Quantum Tree Generator", an approach to generate in superposition all feasible solutions of a given instance.
By introducing a new runtime calculation technique, we can predict the runtime of our method way beyond the range of existing platforms and simulators.
- Score: 0.0
- License:
- Abstract: Here we present two novel contributions for achieving quantum advantage in solving difficult optimisation problems, both in theory and foreseeable practice. (1) We introduce the "Quantum Tree Generator", an approach to generate in superposition all feasible solutions of a given instance, yielding together with amplitude amplification the optimal solutions for 0-1 knapsack problems. The QTG offers massive memory savings and enables competitive runtimes compared to the classical state-of-the-art knapsack solvers (such as COMBO, Gurobi, CP-SAT, Greedy) already for instances involving as few as 100 variables. (2) By introducing a new runtime calculation technique that exploits logging data from the classical solver COMBO, we can predict the runtime of our method way beyond the range of existing quantum platforms and simulators, for various benchmark instances with up to 600 variables. Combining both of these innovations, we demonstrate the QTG's potential practical quantum advantage for large-scale problems, indicating an effective approach for combinatorial optimisation problems.
Related papers
- Quantum evolutionary algorithm for TSP combinatorial optimisation problem [0.0]
This paper implements a new way of solving a problem called the traveling salesman problem (TSP) using quantum genetic algorithm (QGA)
We compared how well this new approach works to the traditional method known as a classical genetic algorithm (CGA)
arXiv Detail & Related papers (2024-09-20T08:27:42Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance.
Quantum computing has been used to attempt to solve these problems using a range of algorithms.
This work presents a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach.
arXiv Detail & Related papers (2024-03-05T17:46:04Z) - Quantum Approximate Optimisation for Not-All-Equal SAT [9.427635404752936]
We apply variational quantum algorithm QAOA to a variant of satisfiability problem (SAT): Not-All-Equal SAT.
We show that while the runtime of both solvers scales exponentially with the problem size, the scaling for QAOA is smaller for large enough circuit depths.
arXiv Detail & Related papers (2024-01-05T15:11:24Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Comparative Benchmark of a Quantum Algorithm for the Bin Packing Problem [0.8434687648198277]
The Bin Packing Problem (BPP) stands out as a paradigmatic optimization problem in logistics.
We have recently proposed a hybrid approach to the one dimensional BPP.
We compare the performance of our procedure with other classical approaches.
arXiv Detail & Related papers (2022-07-15T13:09:12Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Hybrid Quantum-Classical Heuristic for the Bin Packing Problem [0.8434687648198277]
A hybrid classical-quantum approach is presented for dealing with the one-dimensional Bin Packing Problem (1dBPP)
A classical computation subroutine builds complete solutions to the problem from the subsets given by the quantum subroutine.
Being a hybrid solver, we have called our method H-BPP.
arXiv Detail & Related papers (2022-04-12T09:05:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.