Quantum evolutionary algorithm for TSP combinatorial optimisation problem
- URL: http://arxiv.org/abs/2409.13788v1
- Date: Fri, 20 Sep 2024 08:27:42 GMT
- Title: Quantum evolutionary algorithm for TSP combinatorial optimisation problem
- Authors: Yijiang Ma, Tan Chye Cheah,
- Abstract summary: This paper implements a new way of solving a problem called the traveling salesman problem (TSP) using quantum genetic algorithm (QGA)
We compared how well this new approach works to the traditional method known as a classical genetic algorithm (CGA)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper implements a new way of solving a problem called the traveling salesman problem (TSP) using quantum genetic algorithm (QGA). We compared how well this new approach works to the traditional method known as a classical genetic algorithm (CGA). The TSP is a well-established challenge in combinatorial optimization where the objective is to find the most efficient path to visit a series of cities, minimizing the total distance, and returning to the starting point. We chose the TSP to test the performance of both algorithms because of its computational complexity and importance in practical applications. We choose the dataset from the international standard library TSPLIB for our experiments. By designing and implementing both algorithms and conducting experiments on various sizes and types of TSP instances, we provide an in-depth analysis of the accuracy of the optimal solution, the number of iterations, the execution time, and the stability of the algorithms for both. The empirical findings indicate that the CGA outperforms the QGA in terms of finding superior solutions more quickly in most of the test instances, especially when the problem size is large. This suggests that although the principle of quantum computing provides a new way to solve complex combinatorial optimisation problems, the implementation of quantum phenomena and the setting of parameters such as the optimal angle for a quantum revolving gate is challenging and need further optimisation to achieve the desired results. Additionally, it is important to note that the QGA has not been tested on real quantum hardware, so its true performance remains unverified. These limitations provide rich opportunities for further research in the future.
Related papers
- Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture [1.072460284847973]
We show that Variational Quantum Algorithms can be a viable alternative to classical algorithms in the near future.
In particular, we compare the performances, in terms of success probability, of two algorithms, i.e., Quantum Approximate Optimization Algorithm (QAOA) and Variational Quantum Eigensolver (VQE)
The simulation experiments, performed for a set of simple problems, %CM230124 that involve a Cloud and two Edge nodes, show that the VQE algorithm ensures better performances when it is equipped with appropriate circuit textitansatzes that are able to restrict the search space
arXiv Detail & Related papers (2024-01-25T17:37:40Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
We argue that noise makes evaluations of the objective function via quantum circuits biased.
We derive the missing guarantees and find that the rate of convergence is unaffected.
arXiv Detail & Related papers (2022-09-21T19:18:41Z) - Implementable Hybrid Quantum Ant Colony Optimization Algorithm [0.0]
We propose a new hybrid quantum algorithm to produce approximate solutions for NP-hard problems.
We develop an improved algorithm that can be truly implemented on near-term quantum computers.
The benchmarks made by simulating the noiseless quantum circuit and the experiments made on IBM quantum computers show the validity of the algorithm.
arXiv Detail & Related papers (2021-07-08T13:50:51Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.