論文の概要: Exploring Memorization in Fine-tuned Language Models
- arxiv url: http://arxiv.org/abs/2310.06714v2
- Date: Thu, 22 Feb 2024 21:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 17:57:53.499687
- Title: Exploring Memorization in Fine-tuned Language Models
- Title(参考訳): 微調整言語モデルにおける記憶の探索
- Authors: Shenglai Zeng, Yaxin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue
Xing, Shuaiqiang Wang, Jiliang Tang, Dawei Yin
- Abstract要約: 我々は,タスク間の微調整中に,言語モデルの暗記を探索する最初の包括的分析を行う。
オープンソースと、さまざまなタスクにまたがる独自の微調整LMによる研究は、暗記が様々な微調整タスクの間に強い相違を示すことを示している。
本稿では,この課題の相違をスパース符号化理論を用いて直感的に説明し,暗記と注目スコア分布との強い相関関係を明らかにする。
- 参考スコア(独自算出の注目度): 53.52403444655213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown great capabilities in various tasks
but also exhibited memorization of training data, raising tremendous privacy
and copyright concerns. While prior works have studied memorization during
pre-training, the exploration of memorization during fine-tuning is rather
limited. Compared to pre-training, fine-tuning typically involves more
sensitive data and diverse objectives, thus may bring distinct privacy risks
and unique memorization behaviors. In this work, we conduct the first
comprehensive analysis to explore language models' (LMs) memorization during
fine-tuning across tasks. Our studies with open-sourced and our own fine-tuned
LMs across various tasks indicate that memorization presents a strong disparity
among different fine-tuning tasks. We provide an intuitive explanation of this
task disparity via sparse coding theory and unveil a strong correlation between
memorization and attention score distribution.
- Abstract(参考訳): 大規模言語モデル(llm)は様々なタスクにおいて優れた能力を発揮してきましたが、トレーニングデータの記憶力も示しています。
先行研究は事前学習中の記憶について研究してきたが、微調整時の記憶の探索は限られている。
事前トレーニングと比較すると、微調整は一般的により敏感なデータと多様な目的を伴うため、異なるプライバシーリスクとユニークな記憶行動をもたらす可能性がある。
本稿では,タスク間の微調整中に言語モデル(lms)の記憶を探索する最初の包括的解析を行う。
オープンソースによる研究と,様々なタスクにまたがる微調整lmsの研究から,微調整タスク間では記憶力の差が強いことが判明した。
本稿では,この課題の相違をスパース符号化理論を用いて直感的に説明し,暗記と注目スコア分布との強い相関関係を明らかにする。
関連論文リスト
- Undesirable Memorization in Large Language Models: A Survey [5.659933808910005]
大規模言語モデル(LLM)における記憶の話題に関する知識体系化(SoK)を提案する。
記憶とは、モデルがトレーニングデータからフレーズやフレーズを保存し、再生する傾向があることである。
本研究は,記憶現象に寄与する要因の解析に続き,記憶現象を測定するために用いられる指標と方法について議論する。
論文 参考訳(メタデータ) (2024-10-03T16:34:46Z) - Demystifying Verbatim Memorization in Large Language Models [67.49068128909349]
大きな言語モデル(LLM)は、しばしば長いシーケンスを冗長に記憶し、しばしば深刻な法的およびプライバシー上の意味を持つ。
我々は, Pythia チェックポイントからのプレトレーニングをインジェクトシーケンスで継続することにより, 制御された環境下での動詞の暗記を学習する枠組みを開発する。
その結果,(1) 動詞の暗記には非自明な繰り返しが必要であり,(2) 後続の(おそらくはより良い)チェックポイントは,アウト・オブ・ディストリビューション・シーケンスであっても,動詞の列を暗記する傾向にあることがわかった。
論文 参考訳(メタデータ) (2024-07-25T07:10:31Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
本研究は, より単純で知識集約的なタスクにおいて, 記憶がより大きな役割を担い, 一般化が, より困難で推論に基づくタスクの鍵であることを示す。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - A Multi-Perspective Analysis of Memorization in Large Language Models [10.276594755936529]
大規模言語モデル(LLM)は様々な分野で前例のない性能を示す。
LLMはそれらをトレーニングするのと同じコンテンツを生成することができる。
この研究は、様々な観点から記憶を包括的に議論した。
論文 参考訳(メタデータ) (2024-05-19T15:00:50Z) - SoK: Memorization in General-Purpose Large Language Models [25.448127387943053]
大規模言語モデル(LLM)は、無数のアプリケーションが開発中で、目覚ましいペースで進んでいる。
LLMはトレーニングデータの短い秘密を記憶できるだけでなく、さまざまな方法でテキストで表現できる事実や書体スタイルといった概念を記憶することもできる。
本稿では,文章,事実,アイデア,アルゴリズム,書式,分布特性,アライメント目標を網羅したLLMにおける記憶のための分類法を提案する。
論文 参考訳(メタデータ) (2023-10-24T14:25:53Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
異なるニューロンの活性化パターンの多様性は、モデル一般化と記憶の反映であることを示す。
重要なことは、情報組織が記憶の2つの形態を指していることである。
論文 参考訳(メタデータ) (2022-10-17T20:15:24Z) - Towards Differential Relational Privacy and its use in Question
Answering [109.4452196071872]
データセット内のエンティティ間の関係の記憶は、トレーニングされた質問応答モデルを使用する場合、プライバシの問題につながる可能性がある。
我々はこの現象を定量化し、微分プライバシー(DPRP)の定義を可能にする。
質問回答のための大規模モデルを用いた実験において,概念を解説する。
論文 参考訳(メタデータ) (2022-03-30T22:59:24Z) - Counterfactual Memorization in Neural Language Models [91.8747020391287]
様々なNLPタスクで広く使用されている現代のニューラルネットワークモデルは、トレーニングデータからセンシティブな情報を記憶するリスクがある。
言語モデル記憶の以前の研究におけるオープンな疑問は、「一般的な」記憶の除去方法である。
トレーニング中に特定の文書が省略された場合、モデルの予測がどのように変化するかを特徴付ける反事実記憶の概念を定式化する。
論文 参考訳(メタデータ) (2021-12-24T04:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。