論文の概要: Measures of Information Reflect Memorization Patterns
- arxiv url: http://arxiv.org/abs/2210.09404v4
- Date: Thu, 1 Feb 2024 19:30:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 20:51:27.465587
- Title: Measures of Information Reflect Memorization Patterns
- Title(参考訳): 記憶パターンを反映する情報尺度
- Authors: Rachit Bansal, Danish Pruthi, Yonatan Belinkov
- Abstract要約: 異なるニューロンの活性化パターンの多様性は、モデル一般化と記憶の反映であることを示す。
重要なことは、情報組織が記憶の2つの形態を指していることである。
- 参考スコア(独自算出の注目度): 53.71420125627608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are known to exploit spurious artifacts (or shortcuts) that
co-occur with a target label, exhibiting heuristic memorization. On the other
hand, networks have been shown to memorize training examples, resulting in
example-level memorization. These kinds of memorization impede generalization
of networks beyond their training distributions. Detecting such memorization
could be challenging, often requiring researchers to curate tailored test sets.
In this work, we hypothesize -- and subsequently show -- that the diversity in
the activation patterns of different neurons is reflective of model
generalization and memorization. We quantify the diversity in the neural
activations through information-theoretic measures and find support for our
hypothesis on experiments spanning several natural language and vision tasks.
Importantly, we discover that information organization points to the two forms
of memorization, even for neural activations computed on unlabelled
in-distribution examples. Lastly, we demonstrate the utility of our findings
for the problem of model selection. The associated code and other resources for
this work are available at https://rachitbansal.github.io/information-measures.
- Abstract(参考訳): ニューラルネットワークは、ターゲットラベルと共存するスプリアスアーティファクト(あるいはショートカット)を活用し、ヒューリスティックな記憶を示すことで知られている。
一方で、トレーニングサンプルを記憶するネットワークが示されており、サンプルレベルの記憶化が行われている。
このような記憶化は、トレーニング分布を超えたネットワークの一般化を妨げる。
このような記憶の検出は困難であり、しばしば研究者が調整されたテストセットをキュレートする必要がある。
この研究では、異なるニューロンの活性化パターンの多様性がモデル一般化と記憶の反映であると仮定し、その後に示す。
我々は、情報理論的な測定によって神経活性化の多様性を定量化し、いくつかの自然言語や視覚タスクにまたがる実験における仮説を支持する。
重要な点として,情報伝達機構が記憶の2つの形態を指し示すことを見出した。
最後に,本研究のモデル選択問題に対する有用性を示す。
この作業に関連するコードやその他のリソースは、https://rachitbansal.github.io/information-measuresで入手できる。
関連論文リスト
- Exploring Memorization in Fine-tuned Language Models [53.52403444655213]
我々は,タスク間の微調整中に,言語モデルの暗記を探索する最初の包括的分析を行う。
オープンソースと、さまざまなタスクにまたがる独自の微調整LMによる研究は、暗記が様々な微調整タスクの間に強い相違を示すことを示している。
本稿では,この課題の相違をスパース符号化理論を用いて直感的に説明し,暗記と注目スコア分布との強い相関関係を明らかにする。
論文 参考訳(メタデータ) (2023-10-10T15:41:26Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
我々はこれまで未利用であったプロセスの枠組みを活用することを提案する。
我々は、実際のニューロンスパイク列車に使用される神経科学技術を活用した、アクティベーション周波数のみに焦点をあてる。
各ネットワークにおけるアクティベーションパターンを記述するパラメータを導出し、アーキテクチャとトレーニングセット間で一貫した差異を明らかにする。
論文 参考訳(メタデータ) (2023-08-01T22:12:30Z) - The Curious Case of Benign Memorization [19.74244993871716]
データ拡張を含むトレーニングプロトコルの下で、ニューラルネットワークは、完全にランダムなラベルを良心的に記憶することを学ぶ。
深層モデルでは,暗記作業と特徴学習を異なる層に分散することで,信号からノイズを分離する驚くべき能力があることを実証する。
論文 参考訳(メタデータ) (2022-10-25T13:41:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Counterfactual Memorization in Neural Language Models [91.8747020391287]
様々なNLPタスクで広く使用されている現代のニューラルネットワークモデルは、トレーニングデータからセンシティブな情報を記憶するリスクがある。
言語モデル記憶の以前の研究におけるオープンな疑問は、「一般的な」記憶の除去方法である。
トレーニング中に特定の文書が省略された場合、モデルの予測がどのように変化するかを特徴付ける反事実記憶の概念を定式化する。
論文 参考訳(メタデータ) (2021-12-24T04:20:57Z) - Associative Memories via Predictive Coding [37.59398215921529]
脳内の連想記憶は感覚ニューロンによって登録された活動パターンを受信し、記憶する。
本稿では,知覚ニューロンを介して外部刺激を受ける階層的生成ネットワークに基づいて,連想記憶を実現する新しいニューラルモデルを提案する。
論文 参考訳(メタデータ) (2021-09-16T15:46:26Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Encoding-based Memory Modules for Recurrent Neural Networks [79.42778415729475]
本稿では,リカレントニューラルネットワークの設計とトレーニングの観点から,記憶サブタスクについて考察する。
本稿では,線形オートエンコーダを組み込んだエンコーディングベースのメモリコンポーネントを特徴とする新しいモデルであるLinear Memory Networkを提案する。
論文 参考訳(メタデータ) (2020-01-31T11:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。