論文の概要: S4Sleep: Elucidating the design space of deep-learning-based sleep stage classification models
- arxiv url: http://arxiv.org/abs/2310.06715v3
- Date: Thu, 23 Jan 2025 08:00:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:40.390362
- Title: S4Sleep: Elucidating the design space of deep-learning-based sleep stage classification models
- Title(参考訳): S4Sleep:ディープラーニングベースの睡眠ステージ分類モデルの設計空間の解明
- Authors: Tiezhi Wang, Nils Strodthoff,
- Abstract要約: 本研究では,エンコーダ・予測アーキテクチャの幅広いカテゴリにおける設計選択について検討する。
時系列およびスペクトログラム入力表現の両方に適用可能なロバストアーキテクチャを同定する。
これらのアーキテクチャは、構造化状態空間モデルを積分成分として含み、統計的に重要な性能改善を実現する。
- 参考スコア(独自算出の注目度): 1.068128849363198
- License:
- Abstract: Scoring sleep stages in polysomnography recordings is a time-consuming task plagued by significant inter-rater variability. Therefore, it stands to benefit from the application of machine learning algorithms. While many algorithms have been proposed for this purpose, certain critical architectural decisions have not received systematic exploration. In this study, we meticulously investigate these design choices within the broad category of encoder-predictor architectures. We identify robust architectures applicable to both time series and spectrogram input representations. These architectures incorporate structured state space models as integral components and achieve statistically significant performance improvements compared to state-of-the-art approaches on the extensive Sleep Heart Health Study dataset. We anticipate that the architectural insights gained from this study along with the refined methodology for architecture search demonstrated herein will not only prove valuable for future research in sleep staging but also hold relevance for other time series annotation tasks.
- Abstract(参考訳): ポリソムノグラフィー記録における睡眠段階は、レーザー間の大きな変動に悩まされる時間を要する課題である。
したがって、機械学習アルゴリズムの適用の恩恵を受ける必要がある。
この目的のために多くのアルゴリズムが提案されているが、いくつかの重要なアーキテクチャ決定は体系的な探索を受けていない。
本研究では,エンコーダ・予測アーキテクチャの幅広いカテゴリにおいて,これらの設計選択を慎重に検討する。
時系列およびスペクトログラム入力表現の両方に適用可能なロバストアーキテクチャを同定する。
これらのアーキテクチャは、構造化された状態空間モデルを統合コンポーネントとして含み、広範な睡眠健康研究データセットの最先端アプローチと比較して統計的に重要なパフォーマンス改善を実現している。
本研究から得られたアーキテクチャ的洞察は,今後の睡眠ステージング研究に有用であるだけでなく,他の時系列アノテーションタスクとの関連性も期待できる。
関連論文リスト
- LT-DARTS: An Architectural Approach to Enhance Deep Long-Tailed Learning [5.214135587370722]
我々はLong-Tailed Differential Architecture Search (LT-DARTS)を紹介する。
長いデータに対して優れたパフォーマンスを示すアーキテクチャコンポーネントを探索するために、広範な実験を行います。
これにより、検索プロセスを通じて得られたアーキテクチャが優れたコンポーネントを組み込むことが保証される。
論文 参考訳(メタデータ) (2024-11-09T07:19:56Z) - EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
眼球運動バイオメトリックスは、高い安全性の識別により注目されている。
深層学習(DL)モデルは近年,眼球運動認識に成功している。
DLアーキテクチャはまだ人間の事前知識によって決定されている。
眼球運動認識のためのDLアーキテクチャを自動設計する階層的微分可能なアーキテクチャ探索アルゴリズムEM-DARTSを提案する。
論文 参考訳(メタデータ) (2024-09-22T13:11:08Z) - Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach [17.391148813359088]
本稿では,時系列予測タスクのための階層型ニューラルネットワーク探索手法を提案する。
階層型検索空間の設計により,タスク予測用に設計された多くのアーキテクチャタイプを組み込んだ。
長期予測タスクの結果から,本手法が軽量な高性能予測アーキテクチャを探索できることが示唆された。
論文 参考訳(メタデータ) (2024-06-07T17:02:37Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - Search to Pass Messages for Temporal Knowledge Graph Completion [97.40256786473516]
我々は、時間知識グラフ(TKG)の補完のために、NAS(Neural Architecture Search)を用いて、データ固有のメッセージパッシングアーキテクチャを設計することを提案する。
特に,TKGにおけるトポロジカルおよび時間的情報を探るための一般化されたフレームワークを開発する。
より低コストで効率的な探索のために単一経路をサンプリングし,スーパーネット構造を訓練する探索アルゴリズムを採用する。
論文 参考訳(メタデータ) (2022-10-30T04:05:06Z) - Surrogate-assisted Multi-objective Neural Architecture Search for
Real-time Semantic Segmentation [11.866947846619064]
ニューラルアーキテクチャサーチ(NAS)は、アーキテクチャ設計を自動化するための有望な道として登場した。
セマンティックセグメンテーションにNASを適用する際の課題を解決するために,サロゲート支援多目的手法を提案する。
提案手法は,人手による設計と他のNAS手法による自動設計の両方により,既存の最先端アーキテクチャを著しく上回るアーキテクチャを同定することができる。
論文 参考訳(メタデータ) (2022-08-14T10:18:51Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
本稿では,タスク性能と「イントロスペクタビリティ」の両方を最適化するフレームワークを提案する。
タスクエラーとイントロスペクタビリティを共同で最適化することは、エラー内で実行されるより不整合でデバッグ可能なアーキテクチャをもたらすことを実証する。
論文 参考訳(メタデータ) (2021-12-16T05:50:55Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Temporal Knowledge Distillation for On-device Audio Classification [2.2731658205414025]
本研究では,大規模モデルの注意重みに埋め込まれた時間的知識をデバイス上でのモデルに組み込むための新しい知識蒸留法を提案する。
提案手法は,様々なデバイスアーキテクチャにおける予測性能を向上させる。
論文 参考訳(メタデータ) (2021-10-27T02:29:54Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。