Multi-domain improves out-of-distribution and data-limited scenarios for medical image analysis
- URL: http://arxiv.org/abs/2310.06737v3
- Date: Thu, 4 Jul 2024 14:20:59 GMT
- Title: Multi-domain improves out-of-distribution and data-limited scenarios for medical image analysis
- Authors: Ece Ozkan, Xavier Boix,
- Abstract summary: We show that employing models that incorporate multiple domains instead of specialized ones significantly alleviates the limitations observed in specialized models.
For organ recognition, multi-domain model can enhance accuracy by up to 8% compared to conventional specialized models.
- Score: 2.315156126698557
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current machine learning methods for medical image analysis primarily focus on developing models tailored for their specific tasks, utilizing data within their target domain. These specialized models tend to be data-hungry and often exhibit limitations in generalizing to out-of-distribution samples. In this work, we show that employing models that incorporate multiple domains instead of specialized ones significantly alleviates the limitations observed in specialized models. We refer to this approach as multi-domain model and compare its performance to that of specialized models. For this, we introduce the incorporation of diverse medical image domains, including different imaging modalities like X-ray, MRI, CT, and ultrasound images, as well as various viewpoints such as axial, coronal, and sagittal views. Our findings underscore the superior generalization capabilities of multi-domain models, particularly in scenarios characterized by limited data availability and out-of-distribution, frequently encountered in healthcare applications. The integration of diverse data allows multi-domain models to utilize information across domains, enhancing the overall outcomes substantially. To illustrate, for organ recognition, multi-domain model can enhance accuracy by up to 8% compared to conventional specialized models.
Related papers
- Universal Medical Imaging Model for Domain Generalization with Data Privacy [2.8727695958743364]
We propose a federated learning approach to transfer knowledge from multiple local models to a global model.
The primary objective is to train a global model capable of performing a wide variety of medical imaging tasks.
arXiv Detail & Related papers (2024-07-20T01:24:15Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Generalizable Medical Image Segmentation via Random Amplitude Mixup and
Domain-Specific Image Restoration [17.507951655445652]
We present a novel generalizable medical image segmentation method.
To be specific, we design our approach as a multi-task paradigm by combining the segmentation model with a self-supervision domain-specific image restoration module.
We demonstrate the performance of our method on two public generalizable segmentation benchmarks in medical images.
arXiv Detail & Related papers (2022-08-08T03:56:20Z) - Encoding Domain Knowledge in Multi-view Latent Variable Models: A
Bayesian Approach with Structured Sparsity [7.811916700683125]
MuVI is a novel approach for domain-informed multi-view latent variable models.
We demonstrate that our model is able to integrate noisy domain expertise in form of feature sets.
arXiv Detail & Related papers (2022-04-13T08:22:31Z) - Multi-Domain Balanced Sampling Improves Out-of-Distribution
Generalization of Chest X-ray Pathology Prediction Models [67.2867506736665]
We propose an idea for out-of-distribution generalization of chest X-ray pathologies that uses a simple balanced batch sampling technique.
We observed that balanced sampling between the multiple training datasets improves the performance over baseline models trained without balancing.
arXiv Detail & Related papers (2021-12-27T15:28:01Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Domain Generalizer: A Few-shot Meta Learning Framework for Domain
Generalization in Medical Imaging [23.414905586808874]
We adapt a domain generalization method based on a model-agnostic meta-learning framework to biomedical imaging.
The method learns a domain-agnostic feature representation to improve generalization of models to the unseen test distribution.
Our results suggest that the method could help generalize models across different medical centers, image acquisition protocols, anatomies, different regions in a given scan, healthy and diseased populations across varied imaging modalities.
arXiv Detail & Related papers (2020-08-18T03:35:56Z) - Universal Model for Multi-Domain Medical Image Retrieval [88.67940265012638]
Medical Image Retrieval (MIR) helps doctors quickly find similar patients' data.
MIR is becoming increasingly helpful due to the wide use of digital imaging modalities.
However, the popularity of various digital imaging modalities in hospitals also poses several challenges to MIR.
arXiv Detail & Related papers (2020-07-14T23:22:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.