Domain Generalizer: A Few-shot Meta Learning Framework for Domain
Generalization in Medical Imaging
- URL: http://arxiv.org/abs/2008.07724v1
- Date: Tue, 18 Aug 2020 03:35:56 GMT
- Title: Domain Generalizer: A Few-shot Meta Learning Framework for Domain
Generalization in Medical Imaging
- Authors: Pulkit Khandelwal and Paul Yushkevich
- Abstract summary: We adapt a domain generalization method based on a model-agnostic meta-learning framework to biomedical imaging.
The method learns a domain-agnostic feature representation to improve generalization of models to the unseen test distribution.
Our results suggest that the method could help generalize models across different medical centers, image acquisition protocols, anatomies, different regions in a given scan, healthy and diseased populations across varied imaging modalities.
- Score: 23.414905586808874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models perform best when tested on target (test) data domains
whose distribution is similar to the set of source (train) domains. However,
model generalization can be hindered when there is significant difference in
the underlying statistics between the target and source domains. In this work,
we adapt a domain generalization method based on a model-agnostic meta-learning
framework to biomedical imaging. The method learns a domain-agnostic feature
representation to improve generalization of models to the unseen test
distribution. The method can be used for any imaging task, as it does not
depend on the underlying model architecture. We validate the approach through a
computed tomography (CT) vertebrae segmentation task across healthy and
pathological cases on three datasets. Next, we employ few-shot learning, i.e.
training the generalized model using very few examples from the unseen domain,
to quickly adapt the model to new unseen data distribution. Our results suggest
that the method could help generalize models across different medical centers,
image acquisition protocols, anatomies, different regions in a given scan,
healthy and diseased populations across varied imaging modalities.
Related papers
- Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
We study the multi-source Domain Generalization of text classification.
We propose a framework to use multiple seen domains to train a model that can achieve high accuracy in an unseen domain.
arXiv Detail & Related papers (2024-09-20T07:46:21Z) - Unsupervised Federated Domain Adaptation for Segmentation of MRI Images [20.206972068340843]
We develop a method for unsupervised federated domain adaptation using multiple annotated source domains.
Our approach enables the transfer of knowledge from several annotated source domains to adapt a model for effective use in an unannotated target domain.
arXiv Detail & Related papers (2024-01-02T00:31:41Z) - DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation [43.842694540544194]
We propose to combine domain generalization and test-time adaptation to create a highly effective approach for reusing pre-trained models in unseen target domains.
We demonstrate that our method, combined with pre-trained whole-body CT models, can effectively segment MR images with high accuracy.
arXiv Detail & Related papers (2023-12-11T10:26:21Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Generalizable Medical Image Segmentation via Random Amplitude Mixup and
Domain-Specific Image Restoration [17.507951655445652]
We present a novel generalizable medical image segmentation method.
To be specific, we design our approach as a multi-task paradigm by combining the segmentation model with a self-supervision domain-specific image restoration module.
We demonstrate the performance of our method on two public generalizable segmentation benchmarks in medical images.
arXiv Detail & Related papers (2022-08-08T03:56:20Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - Contrastive Domain Disentanglement for Generalizable Medical Image
Segmentation [12.863227646939563]
We propose Contrastive Disentangle Domain (CDD) network for generalizable medical image segmentation.
We first introduce a disentangle network to decompose medical images into an anatomical representation factor and a modality representation factor.
We then propose a domain augmentation strategy that can randomly generate new domains for model generalization training.
arXiv Detail & Related papers (2022-05-13T10:32:41Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.