Universal Medical Imaging Model for Domain Generalization with Data Privacy
- URL: http://arxiv.org/abs/2407.14719v1
- Date: Sat, 20 Jul 2024 01:24:15 GMT
- Title: Universal Medical Imaging Model for Domain Generalization with Data Privacy
- Authors: Ahmed Radwan, Islam Osman, Mohamed S. Shehata,
- Abstract summary: We propose a federated learning approach to transfer knowledge from multiple local models to a global model.
The primary objective is to train a global model capable of performing a wide variety of medical imaging tasks.
- Score: 2.8727695958743364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving domain generalization in medical imaging poses a significant challenge, primarily due to the limited availability of publicly labeled datasets in this domain. This limitation arises from concerns related to data privacy and the necessity for medical expertise to accurately label the data. In this paper, we propose a federated learning approach to transfer knowledge from multiple local models to a global model, eliminating the need for direct access to the local datasets used to train each model. The primary objective is to train a global model capable of performing a wide variety of medical imaging tasks. This is done while ensuring the confidentiality of the private datasets utilized during the training of these models. To validate the effectiveness of our approach, extensive experiments were conducted on eight datasets, each corresponding to a different medical imaging application. The client's data distribution in our experiments varies significantly as they originate from diverse domains. Despite this variation, we demonstrate a statistically significant improvement over a state-of-the-art baseline utilizing masked image modeling over a diverse pre-training dataset that spans different body parts and scanning types. This improvement is achieved by curating information learned from clients without accessing any labeled dataset on the server.
Related papers
- A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis [48.84443450990355]
Deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations.
We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images.
Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language.
arXiv Detail & Related papers (2024-05-23T17:55:02Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Federated Data Model [16.62770246342126]
In artificial intelligence (AI), especially deep learning, data diversity and volume play a pivotal role in model development.
We developed a method called the Federated Data Model (FDM) to train robust deep learning models across different locations.
Our results show that models trained with this method perform well both on the data they were originally trained on and on data from other sites.
arXiv Detail & Related papers (2024-03-13T18:16:54Z) - Building Universal Foundation Models for Medical Image Analysis with
Spatially Adaptive Networks [5.661631789478932]
We propose a universal foundation model for medical image analysis that processes images with heterogeneous spatial properties using a unified structure.
We pre-train a spatial adaptive visual tokenizer (SPAD-VT) and then a spatial adaptive Vision Transformer (SPAD-ViT) via masked image modeling (MIM) on 55 public medical image datasets.
The experimental results on downstream medical image classification and segmentation tasks demonstrate the superior performance and label efficiency of our model.
arXiv Detail & Related papers (2023-12-12T08:33:45Z) - Multi-domain improves out-of-distribution and data-limited scenarios for medical image analysis [2.315156126698557]
We show that employing models that incorporate multiple domains instead of specialized ones significantly alleviates the limitations observed in specialized models.
For organ recognition, multi-domain model can enhance accuracy by up to 8% compared to conventional specialized models.
arXiv Detail & Related papers (2023-10-10T16:07:23Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Real-World Multi-Domain Data Applications for Generalizations to
Clinical Settings [1.508558791031741]
Deep learning models perform well when trained on standardized datasets from artificial settings, such as clinical trials.
We show that by employing a self-supervised approach with transfer learning on a multi-domain real-world dataset, we can achieve 16% relative improvement on a standardized dataset.
arXiv Detail & Related papers (2020-07-24T17:41:23Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
arXiv Detail & Related papers (2020-06-15T10:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.