Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
- URL: http://arxiv.org/abs/2310.06771v2
- Date: Tue, 7 May 2024 18:50:09 GMT
- Title: Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
- Authors: Christopher A. Choquette-Choo, Krishnamurthy Dvijotham, Krishna Pillutla, Arun Ganesh, Thomas Steinke, Abhradeep Thakurta,
- Abstract summary: Differentially private learning algorithms inject noise into the learning process.
We show how correlated noise provably improves upon vanilla-SGD as a function of problem parameters.
- Score: 25.81442865194914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private learning algorithms inject noise into the learning process. While the most common private learning algorithm, DP-SGD, adds independent Gaussian noise in each iteration, recent work on matrix factorization mechanisms has shown empirically that introducing correlations in the noise can greatly improve their utility. We characterize the asymptotic learning utility for any choice of the correlation function, giving precise analytical bounds for linear regression and as the solution to a convex program for general convex functions. We show, using these bounds, how correlated noise provably improves upon vanilla DP-SGD as a function of problem parameters such as the effective dimension and condition number. Moreover, our analytical expression for the near-optimal correlation function circumvents the cubic complexity of the semi-definite program used to optimize the noise correlation matrix in previous work. We validate our theory with experiments on private deep learning. Our work matches or outperforms prior work while being efficient both in terms of compute and memory.
Related papers
- Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
The proposed method is demonstrated to discover various differential equations at various noise levels, including three-dimensional, fourth-order, and stiff equations.
The parameter estimation converges accurately to the true values with a small coefficient of variation, suggesting robustness to the noise.
arXiv Detail & Related papers (2024-10-13T21:48:51Z) - Computationally Efficient RL under Linear Bellman Completeness for Deterministic Dynamics [39.07258580928359]
We study computationally and statistically efficient Reinforcement Learning algorithms for the linear Bellman Complete setting.
This setting uses linear function approximation to capture value functions and unifies existing models like linear Markov Decision Processes (MDP) and Linear Quadratic Regulators (LQR)
Our work provides a computationally efficient algorithm for the linear Bellman complete setting that works for MDPs with large action spaces, random initial states, and random rewards but relies on the underlying dynamics to be deterministic.
arXiv Detail & Related papers (2024-06-17T17:52:38Z) - Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise [19.496063739638924]
We consider a saturate problem of Bayesian inference for a structured spiked model.
We show how to predict the statistical limits using an efficient algorithm inspired by the theory of adaptive Thouless-Anderson-Palmer equations.
arXiv Detail & Related papers (2024-05-31T16:38:35Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Gradient Descent with Linearly Correlated Noise: Theory and Applications
to Differential Privacy [17.81999485513265]
We study gradient descent under linearly correlated noise.
We use our results to develop new, effective matrix factorizations for differentially private optimization.
arXiv Detail & Related papers (2023-02-02T23:32:24Z) - Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning [47.904127007515925]
We study a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction.
We prove that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic approximation guarantees as their counterparts.
Notably, these are the first finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling.
arXiv Detail & Related papers (2023-01-03T04:09:38Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
We optimize the information-theoretical generalization bound by manipulating the noise structure in SGLD.
We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance.
arXiv Detail & Related papers (2021-10-26T15:02:27Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
An online and incremental algorithm capable of learning from a single pass through data, called Incremental Gaussian Mixture Network (IGMN), was employed as a sample-efficient function approximator for the joint state and Q-values space.
Results are analyzed to explain the properties of the obtained algorithm, and it is observed that the use of the IGMN function approximator brings some important advantages to reinforcement learning in relation to conventional neural networks trained by gradient descent methods.
arXiv Detail & Related papers (2020-11-02T03:18:15Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
We propose a systematic method to transform operations into operations that are differentiable and never locally constant.
Our approach relies on perturbeds, and can be used readily together with existing solvers.
We show how this framework can be connected to a family of losses developed in structured prediction, and give theoretical guarantees for their use in learning tasks.
arXiv Detail & Related papers (2020-02-20T11:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.