PICProp: Physics-Informed Confidence Propagation for Uncertainty
Quantification
- URL: http://arxiv.org/abs/2310.06923v2
- Date: Fri, 20 Oct 2023 05:35:13 GMT
- Title: PICProp: Physics-Informed Confidence Propagation for Uncertainty
Quantification
- Authors: Qianli Shen, Wai Hoh Tang, Zhun Deng, Apostolos Psaros, Kenji
Kawaguchi
- Abstract summary: This paper introduces and studies confidence interval estimation for deterministic partial differential equations as a novel problem.
That is, to propagate confidence, in the form of CIs, from data locations to the entire domain with probabilistic guarantees.
We propose a method, termed Physics-Informed Confidence propagation (PICProp), based on bi-level optimization to compute a valid CI without making heavy assumptions.
- Score: 30.66285259412019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard approaches for uncertainty quantification in deep learning and
physics-informed learning have persistent limitations. Indicatively, strong
assumptions regarding the data likelihood are required, the performance highly
depends on the selection of priors, and the posterior can be sampled only
approximately, which leads to poor approximations because of the associated
computational cost. This paper introduces and studies confidence interval (CI)
estimation for deterministic partial differential equations as a novel problem.
That is, to propagate confidence, in the form of CIs, from data locations to
the entire domain with probabilistic guarantees. We propose a method, termed
Physics-Informed Confidence Propagation (PICProp), based on bi-level
optimization to compute a valid CI without making heavy assumptions. We provide
a theorem regarding the validity of our method, and computational experiments,
where the focus is on physics-informed learning.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Probabilistically Plausible Counterfactual Explanations with Normalizing Flows [2.675793767640172]
We present PPCEF, a novel method for generating probabilistically plausible counterfactual explanations.
Our method enforces plausibility by directly optimizing the explicit density function without assuming a particular family of parametrized distributions.
PPCEF is a powerful tool for interpreting machine learning models and for improving fairness, accountability, and trust in AI systems.
arXiv Detail & Related papers (2024-05-27T20:24:03Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification.
Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples.
This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions.
arXiv Detail & Related papers (2023-12-25T20:02:51Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Optimal Learning via Moderate Deviations Theory [4.6930976245638245]
We develop a systematic construction of highly accurate confidence intervals by using a moderate deviation principle-based approach.
It is shown that the proposed confidence intervals are statistically optimal in the sense that they satisfy criteria regarding exponential accuracy, minimality, consistency, mischaracterization probability, and eventual uniformly most accurate (UMA) property.
arXiv Detail & Related papers (2023-05-23T19:57:57Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
This paper concerns the optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) measure is only partially/imperfectly known.
We demonstrate the learning based framework on the uncertainty optimization problem.
We show that the approach can be used to construct maps for the performance certificate and safety in engineering practice.
arXiv Detail & Related papers (2022-12-28T14:30:53Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z) - Scalable Uncertainty for Computer Vision with Functional Variational
Inference [18.492485304537134]
We leverage the formulation of variational inference in function space.
We obtain predictive uncertainty estimates at the cost of a single forward pass through any chosen CNN architecture.
We propose numerically efficient algorithms which enable fast training in the context of high-dimensional tasks.
arXiv Detail & Related papers (2020-03-06T19:09:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.