論文の概要: Stochastic Super-resolution of Cosmological Simulations with Denoising Diffusion Models
- arxiv url: http://arxiv.org/abs/2310.06929v2
- Date: Tue, 12 Nov 2024 08:24:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:07.964552
- Title: Stochastic Super-resolution of Cosmological Simulations with Denoising Diffusion Models
- Title(参考訳): 縮退拡散モデルによる宇宙シミュレーションの確率的超解像
- Authors: Andreas Schanz, Florian List, Oliver Hahn,
- Abstract要約: 超解宇宙大規模構造予測のための強力な生成モデルとして,デノナイジング拡散モデルを導入する。
我々は,提案モデルが高解像度画像とパワースペクトルをパーセンテージレベルで一貫するだけでなく,与えられた低解像度シミュレーションと整合した小型特徴の多様性を再現できることを実証した。
- 参考スコア(独自算出の注目度): 3.2771631221674333
- License:
- Abstract: In recent years, deep learning models have been successfully employed for augmenting low-resolution cosmological simulations with small-scale information, a task known as "super-resolution". So far, these cosmological super-resolution models have relied on generative adversarial networks (GANs), which can achieve highly realistic results, but suffer from various shortcomings (e.g. low sample diversity). We introduce denoising diffusion models as a powerful generative model for super-resolving cosmic large-scale structure predictions (as a first proof-of-concept in two dimensions). To obtain accurate results down to small scales, we develop a new "filter-boosted" training approach that redistributes the importance of different scales in the pixel-wise training objective. We demonstrate that our model not only produces convincing super-resolution images and power spectra consistent at the percent level, but is also able to reproduce the diversity of small-scale features consistent with a given low-resolution simulation. This enables uncertainty quantification for the generated small-scale features, which is critical for the usefulness of such super-resolution models as a viable surrogate model for cosmic structure formation.
- Abstract(参考訳): 近年,大規模情報を用いた低分解能宇宙シミュレーションの高速化に深層学習モデルが成功している。
これらの宇宙論的超解像モデルは、非常に現実的な結果が得られるが、様々な欠点(例えばサンプルの多様性の低さ)に悩まされているGAN(Generative Adversarial Network)に依存している。
超解宇宙大規模構造予測のための強力な生成モデルとしてデノナイジング拡散モデルを導入する(2次元における最初の概念実証として)。
そこで我々は, 画素単位の訓練対象において, 異なる尺度の重要性を再分配する新しい「フィルターブースト」トレーニング手法を開発した。
我々は,提案モデルが高解像度画像とパワースペクトルをパーセンテージレベルで一貫するだけでなく,与えられた低解像度シミュレーションと整合した小型特徴の多様性を再現できることを実証した。
これにより、生成された小さな特徴に対する不確実な定量化が可能となり、宇宙構造形成のための生存可能な代理モデルとしてそのような超解像モデルの有用性に重要なものとなる。
関連論文リスト
- A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
本研究は,超高分解能MRSIのためのフローベースTrncated Denoising Diffusion Modelを導入する。
拡散鎖を切断することで拡散過程を短縮し, 正規化フローベースネットワークを用いて切断工程を推定する。
FTDDMは既存の生成モデルよりも優れており、サンプリングプロセスを9倍以上高速化している。
論文 参考訳(メタデータ) (2024-10-25T03:42:35Z) - FouriScale: A Frequency Perspective on Training-Free High-Resolution Image Synthesis [48.9652334528436]
本稿では、周波数領域解析の観点から、FouriScaleの革新的な学習不要アプローチを紹介する。
従来の拡散モデルの畳み込み層を,低域演算とともに拡張手法を組み込むことで置き換える。
提案手法は, 生成画像の構造的整合性と忠実度をバランスさせ, 任意のサイズ, 高解像度, 高品質な生成の驚くべき能力を実現する。
論文 参考訳(メタデータ) (2024-03-19T17:59:33Z) - Domain Transfer in Latent Space (DTLS) Wins on Image Super-Resolution --
a Non-Denoising Model [13.326634982790528]
本稿では,ガウス雑音から逃れる単純な手法を提案するが,画像超解像のための拡散モデルの基本構造を採用する。
実験結果から,本手法は最先端の大規模超解像モデルだけでなく,画像超解像に対する現在の拡散モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-11-04T09:57:50Z) - PSRFlow: Probabilistic Super Resolution with Flow-Based Models for
Scientific Data [11.15523311079383]
PSRFlowは、科学データ超解像のための新しい正規化フローベース生成モデルである。
以上の結果から,既存の手法と比較して,優れた性能とロバストな不確実性定量化が得られた。
論文 参考訳(メタデータ) (2023-08-08T22:10:29Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
本稿では,高忠実度連続画像超解像のためのインプリシティ拡散モデル(IDM)を提案する。
IDMは暗黙のニューラル表現とデノナイジング拡散モデルを統合されたエンドツーエンドフレームワークに統合する。
スケーリング係数は分解能を調節し、最終出力におけるLR情報と生成された特徴の比率を変調する。
論文 参考訳(メタデータ) (2023-03-29T07:02:20Z) - Learning multi-scale local conditional probability models of images [7.07848787073901]
ディープニューラルネットワークは、最近のスコアベース拡散法で得られた高品質な世代によって証明されたように、画像の強力な事前確率モデルを学ぶことができる。
しかし、これらのネットワークが複雑なグローバルな統計構造をとらえる手段は、明らかに次元の呪いに苦しむことなく、謎のままだ。
我々は拡散法を多スケール分解に取り入れ、粗大係数に条件付きウェーブレット係数の定常局所マルコフモデルを仮定することにより次元性を減少させる。
論文 参考訳(メタデータ) (2023-03-06T09:23:14Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Super-resolving Dark Matter Halos using Generative Deep Learning [77.79867381335231]
畳み込みニューラルネットワーク(CNN)上に構築された生成的ディープラーニング手法は、宇宙論における非線形構造を予測する優れたツールを提供する。
本研究では,高分解能暗黒物質ハロを大規模で低分解能暗黒物質のみのシミュレーションから予測する。
論文 参考訳(メタデータ) (2021-11-11T18:59:07Z) - Learning Integrodifferential Models for Image Denoising [14.404339094377319]
画像復調のためのエッジエンハンシング異方性拡散モデルの積分微分拡張を導入する。
重み付けされた構造情報を複数のスケールで蓄積することにより,マルチスケール統合による異方性の生成を初めて行う。
論文 参考訳(メタデータ) (2020-10-21T10:50:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。