論文の概要: Violation of Expectation via Metacognitive Prompting Reduces Theory of
Mind Prediction Error in Large Language Models
- arxiv url: http://arxiv.org/abs/2310.06983v1
- Date: Tue, 10 Oct 2023 20:05:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 01:15:31.427993
- Title: Violation of Expectation via Metacognitive Prompting Reduces Theory of
Mind Prediction Error in Large Language Models
- Title(参考訳): メタ認知的プロンプトによる期待の違反は、大規模言語モデルにおけるマインド予測誤差の理論を減少させる
- Authors: Courtland Leer, Vincent Trost, Vineeth Voruganti
- Abstract要約: 大規模言語モデル(LLM)は、心の理論(ToM)タスクにおいて、魅力的な習熟度を示す。
この、観察不能な精神状態を他人に伝える能力は、人間の社会的認知に不可欠であり、人間と人工知能(AI)の主観的関係において同様に重要であることが証明される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent research shows that Large Language Models (LLMs) exhibit a compelling
level of proficiency in Theory of Mind (ToM) tasks. This ability to impute
unobservable mental states to others is vital to human social cognition and may
prove equally important in principal-agent relations between individual humans
and Artificial Intelligences (AIs). In this paper, we explore how a mechanism
studied in developmental psychology known as Violation of Expectation (VoE) can
be implemented to reduce errors in LLM prediction about users by leveraging
emergent ToM affordances. And we introduce a \textit{metacognitive prompting}
framework to apply VoE in the context of an AI tutor. By storing and retrieving
facts derived in cases where LLM expectation about the user was violated, we
find that LLMs are able to learn about users in ways that echo theories of
human learning. Finally, we discuss latent hazards and augmentative
opportunities associated with modeling user psychology and propose ways to
mitigate risk along with possible directions for future inquiry.
- Abstract(参考訳): 近年の研究では、Large Language Models (LLM) が、心の理論(ToM)のタスクにおいて、魅力的な習熟度を示すことが示されている。
他者に観察不能な精神状態を誘発する能力は、人間の社会認識に不可欠であり、個人と人工知能(ais)の間の主従関係において等しく重要である。
本稿では,創発的なToMの余裕を生かして,ユーザに対するLLM予測の誤りを低減するために,VoE(Violation of expectation)として知られる発達心理学のメカニズムをいかに実装できるかを検討する。
また、AI教師の文脈にVoEを適用するために、textit{metacognitive prompting}フレームワークを導入する。
ユーザに対するLCMの期待が損なわれている場合に引き起こされた事実を保存し,検索することで,LLMは人間の学習理論に反する方法でユーザについて学習できることがわかった。
最後に,ユーザ心理学のモデル化に関連する潜在的な危険と拡張的機会について議論し,今後の調査の方向性とともにリスクを軽減する方法を提案する。
関連論文リスト
- Causality for Large Language Models [37.10970529459278]
数十億または数兆のパラメータを持つ大規模言語モデル(LLM)は、膨大なデータセットでトレーニングされており、一連の言語タスクで前例のない成功を収めている。
近年の研究では、LLMは因果オウムとして機能し、因果知識を真に理解したり応用したりすることなくリサイクリングすることができることが強調されている。
本調査は, ライフサイクルのすべての段階において, 因果性がどのようにLCMを強化するかを検討することを目的としている。
論文 参考訳(メタデータ) (2024-10-20T07:22:23Z) - Modulating Language Model Experiences through Frictions [56.17593192325438]
言語モデルの過剰消費は、短期の未確認エラーを伝播し、長期の人間の能力を損なうリスクを出力する。
行動科学の介入にインスパイアされた言語モデル体験のための選択的摩擦を提案し,誤用を抑える。
論文 参考訳(メタデータ) (2024-06-24T16:31:11Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
本研究では,Large Language Models(LLM)の能力とリスクについて検討する。
LLM内の単語関係の統計的パターンと、Martin Heidegger氏の概念である"ready-to-hand"と"present-at-hand"の間には、革新的な並列性がある。
以上の結果から, LLMには直接的説明推論と擬似論理推論の能力があるが, 真理的推論に乏しく, 創造的推論能力がないことが明らかとなった。
論文 参考訳(メタデータ) (2024-03-05T19:40:53Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Theory of Mind abilities of Large Language Models in Human-Robot
Interaction : An Illusion? [18.770522926093786]
大規模言語モデルは、様々な自然言語や生成タスクにおいて例外的な生成能力を示している。
高い利害関係とおそらく不可逆的な結果を持つToM能力の特殊応用について検討する。
本研究では,ロボットがLarge Language Model(LLM)を用いてロボットの動作を人間の観察者と同様の方法で評価する,知覚的行動認識の課題に焦点を当てる。
論文 参考訳(メタデータ) (2024-01-10T18:09:36Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
そこで我々は,そのような推論能力をより小さなLMに蒸留する,適切な学習手法を提案する。
対話型多ラウンド学習パラダイムを構築することにより,理科教員としてのLLMの可能性を活用する。
より小さなLMの推論可能性を活用するために,学生が自作ミスから学習する動機付けを目的とした自己回帰学習を提案する。
論文 参考訳(メタデータ) (2023-10-20T07:50:10Z) - Deception Abilities Emerged in Large Language Models [0.0]
大規模言語モデル(LLM)は、現在、人間のコミュニケーションと日常の生活を備えた人工知能(AI)システムの最前線にある。
本研究は, GPT-4 などの最先端 LLM にそのような戦略が出現したが, 初期の LLM には存在しなかったことを明らかにする。
我々は、最先端のLLMが他のエージェントの誤った信念を理解し、誘導できることを示す一連の実験を行う。
論文 参考訳(メタデータ) (2023-07-31T09:27:01Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
本稿では,過去のトラジェクトリからアクターの潜在特性ベクトルを生成するニューラルToMアーキテクチャを提案する。
この特性ベクトルは、予測ニューラルネットワークの高速重み付けスキームを介して予測機構を乗法的に変調する。
実験により,高速重量はエージェントの特性をモデル化し,マインドリーディング能力を向上させるために優れた誘導バイアスを与えることが示された。
論文 参考訳(メタデータ) (2022-04-17T11:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。