Ion Trap with In-Vacuum High Numerical Aperture Imaging for a Dual-Species Modular Quantum Computer
- URL: http://arxiv.org/abs/2310.07058v2
- Date: Tue, 26 Mar 2024 21:46:44 GMT
- Title: Ion Trap with In-Vacuum High Numerical Aperture Imaging for a Dual-Species Modular Quantum Computer
- Authors: Allison L. Carter, Jameson O'Reilly, George Toh, Sagnik Saha, Mikhail Shalaev, Isabella Goetting, Christopher Monroe,
- Abstract summary: Photonic interconnects between quantum systems will play a central role in both scalable quantum computing and quantum networking.
We present an ion trap system that has the highest reported free-space photon collection efficiency for quantum networking.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photonic interconnects between quantum systems will play a central role in both scalable quantum computing and quantum networking. Entanglement of remote qubits via photons has been demonstrated in many platforms; however, improving the rate of entanglement generation will be instrumental for integrating photonic links into modular quantum computers. We present an ion trap system that has the highest reported free-space photon collection efficiency for quantum networking. We use a pair of in-vacuum aspheric lenses, each with a numerical aperture of 0.8, to couple 10% of the 493 nm photons emitted from a $^{138}$Ba$^+$ ion into single-mode fibers. We also demonstrate that proximal effects of the lenses on the ion position and motion can be mitigated.
Related papers
- Bell state generation and CNOT operation using on-demand identical photons from shape-controlled spatially ordered quantum dots [2.368393320613973]
We develop a platform of mesa-top single quantum dots (MTSQDs) located in designed regular arrays.
A Bell state fidelity of 0.825$pm$0.010 is achieved with two photon interference (TPI) visibility of 0.947$pm$0.0015 at 4K without Purcell enhancement.
arXiv Detail & Related papers (2024-11-07T04:04:11Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Quantum Interference of Identical Photons from Remote GaAs Quantum Dots [0.45507178426690204]
Photonic quantum technology provides a viable route to quantum communication, quantum simulation, and quantum information processing.
Recent progress has seen the realisation of boson sampling using 20 single-photons and quantum key distribution over hundreds of kilometres.
For applications, a significant roadblock is the poor quantum coherence upon interfering single photons created by independent quantum dots.
Here, we demonstrate two-photon interference with near-unity visibility ($93.0pm0.8$)% using photons from two completely separate GaAs quantum dots.
arXiv Detail & Related papers (2021-06-07T18:00:03Z) - Photon Conversion and Interaction on Chip [10.809303792951997]
We demonstrate ultra-efficient sum-frequency generation on chip.
The external quantum efficiency reaches $(65pm3)%$ with only $(104pm4)$ $mu$W pump power.
We directly measure the conversion probability produced by a single pump photon to be $10-5$ -- breaking the record by 100 times.
arXiv Detail & Related papers (2021-05-01T14:56:55Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.