論文の概要: SparseCoder: Advancing Source Code Analysis with Sparse Attention and Learned Token Pruning
- arxiv url: http://arxiv.org/abs/2310.07109v2
- Date: Wed, 11 Sep 2024 23:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 22:22:54.258675
- Title: SparseCoder: Advancing Source Code Analysis with Sparse Attention and Learned Token Pruning
- Title(参考訳): SparseCoder: スパースアテンションと学習トークンプルーニングによるソースコード解析の改善
- Authors: Xueqi Yang, Mariusz Jakubowski, Li Kang, Haojie Yu, Tim Menzies,
- Abstract要約: 本稿では、スパースアテンションと学習トークンプルーニングを取り入れた革新的なアプローチであるSparseCoderを紹介する。
従来の最先端モデルであるCodeBERT,RoBERTa,CodeT5と比較して,SparseCoderがはるかに長い入力シーケンスを処理可能であることを示す。
SparseCoderは測定した他のメソッドの4倍高速で、1秒あたりの浮動小数点演算の50%削減を実現している。
- 参考スコア(独自算出の注目度): 10.067863549963834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As software projects rapidly evolve, software artifacts become more complex and defects behind get harder to identify. The emerging Transformer-based approaches, though achieving remarkable performance, struggle with long code sequences due to their self-attention mechanism, which scales quadratically with the sequence length. This paper introduces SparseCoder, an innovative approach incorporating sparse attention and learned token pruning (LTP) method (adapted from natural language processing) to address this limitation. Compared to previous state-of-the-art models CodeBERT, RoBERTa, and CodeT5, our experiments demonstrate that SparseCoder can handle significantly longer input sequences--at least twice as long, within the limits of our hardware resources and data statistics. Additionally, SparseCoder is four times faster than other methods measured in runtime, achieving a 50% reduction in floating point operations per second (FLOPs) with a negligible performance drop of less than 1% compared to Transformers using sparse attention (Sparse Atten). Plotting FLOPs of model inference against token lengths reveals that SparseCoder scales linearly, whereas other methods, including the current state-of-the-art model CodeT5, scale quadratically. Moreover, SparseCoder enhances interpretability by visualizing non-trivial tokens layer-wise.
- Abstract(参考訳): ソフトウェアプロジェクトが急速に進化するにつれて、ソフトウェアアーチファクトはより複雑になり、裏にある欠陥は識別しにくくなります。
Transformerベースの新たなアプローチは、優れたパフォーマンスを達成しているが、シーケンス長を4倍にスケールする自己アテンションメカニズムのために、長いコードシーケンスに苦労している。
本稿では、この制限に対処するために、スパースアテンションと学習トークンプルーニング(LTP)手法を取り入れた革新的なアプローチであるSparseCoderを紹介する。
従来の最先端モデルであるCodeBERT、RoBERTa、CodeT5と比較して、SparseCoderはハードウェアリソースとデータ統計の限界の中で、少なくとも2倍の長い入力シーケンスを処理できることを示した。
さらに、SparseCoderはランタイムで測定された他のメソッドの4倍の速度で、1秒あたりの浮動小数点演算(FLOP)の50%削減を実現している。
トークン長に対するモデル推論のFLOPは、SparseCoderが線形にスケールするのに対して、現在の最先端モデルであるCodeT5を含む他のメソッドは、二次的にスケールすることを示している。
さらに、SparseCoderは非自明なトークンを階層的に視覚化することで、解釈可能性を高める。
関連論文リスト
- FIRP: Faster LLM inference via future intermediate representation prediction [54.897493351694195]
FIRPはデコードステップ毎に1つではなく複数のトークンを生成する。
いくつかのモデルとデータセットで1.9x-3xのスピードアップ比を示す広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-27T15:53:49Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Efficient Encoder-Decoder Transformer Decoding for Decomposable Tasks [53.550782959908524]
エンコーダ・デコーダモデルのための新しい構成を導入し、構造化された出力と分解可能なタスクの効率を改善する。
提案手法は,インプットを一度エンコードして並列にデコードすることで,トレーニングと推論の効率を向上する。
論文 参考訳(メタデータ) (2024-03-19T19:27:23Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - SPEED: Speculative Pipelined Execution for Efficient Decoding [35.45955948053644]
本稿では,現在のトークンと並行して複数の将来トークンを投機的に実行することで,推論効率を向上させるSPEEDを提案する。
パラメータ共有を使用するTransformerデコーダでは、並列に実行されるトークンのメモリ操作を償却することができる。
モデル精度に対する遅延低減の観点から,本手法の有効性を実証し,パラメータ共有によるより深いデコーダのトレーニングを最小限のランタイムオーバーヘッドで行う方法を示した。
論文 参考訳(メタデータ) (2023-10-18T16:07:01Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
本稿では,タスク固有のデコーダネットワークを出力側で最適化するデコーダチューニング(DecT)を提案する。
勾配ベースの最適化により、DecTは数秒以内にトレーニングでき、サンプル毎に1つのPクエリしか必要としない。
我々は、広範囲にわたる自然言語理解実験を行い、DecTが200ドル以上のスピードアップで最先端のアルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-12-16T11:15:39Z) - You Need Multiple Exiting: Dynamic Early Exiting for Accelerating
Unified Vision Language Model [37.24203191658052]
大規模なTransformerモデルは、統一アーキテクチャで様々な下流視覚言語タスクに大幅な改善をもたらす。
性能改善は、モデルサイズが増大し、推論速度が遅くなり、厳格化のコストが増大する。
本稿では,エンコーダとデコーダのレイヤを動的にスキップできる統一視覚言語モデルのための新しい早期終了戦略を提案する。
論文 参考訳(メタデータ) (2022-11-21T02:32:25Z) - Pruning Neural Belief Propagation Decoders [77.237958592189]
本稿では,機械学習を用いたBPデコードに対して,過剰完全パリティチェック行列を調整する手法を提案する。
我々は,デコーダの複雑さを低減しつつ,0.27dB,1.5dBのML性能を実現する。
論文 参考訳(メタデータ) (2020-01-21T12:05:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。