論文の概要: Speculative Decoding for Verilog: Speed and Quality, All in One
- arxiv url: http://arxiv.org/abs/2503.14153v1
- Date: Tue, 18 Mar 2025 11:21:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:05.859701
- Title: Speculative Decoding for Verilog: Speed and Quality, All in One
- Title(参考訳): Verilogの投機的デコーディング - スピードと品質を1つにまとめる
- Authors: Changran Xu, Yi Liu, Yunhao Zhou, Shan Huang, Ningyi Xu, Qiang Xu,
- Abstract要約: 本稿では,Verilogコード生成のための投機的復号法を提案する。
標準的なトークン化方式とは異なり、我々の手法はデコード停止を構文的に重要なトークンと一致させる。
実験の結果,Verilogのコード生成では最大5.05倍の高速化が達成された。
- 参考スコア(独自算出の注目度): 14.64921497909531
- License:
- Abstract: The rapid advancement of large language models (LLMs) has revolutionized code generation tasks across various programming languages. However, the unique characteristics of programming languages, particularly those like Verilog with specific syntax and lower representation in training datasets, pose significant challenges for conventional tokenization and decoding approaches. In this paper, we introduce a novel application of speculative decoding for Verilog code generation, showing that it can improve both inference speed and output quality, effectively achieving speed and quality all in one. Unlike standard LLM tokenization schemes, which often fragment meaningful code structures, our approach aligns decoding stops with syntactically significant tokens, making it easier for models to learn the token distribution. This refinement addresses inherent tokenization issues and enhances the model's ability to capture Verilog's logical constructs more effectively. Our experimental results show that our method achieves up to a 5.05x speedup in Verilog code generation and increases pass@10 functional accuracy on RTLLM by up to 17.19% compared to conventional training strategies. These findings highlight speculative decoding as a promising approach to bridge the quality gap in code generation for specialized programming languages.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、様々なプログラミング言語のコード生成タスクに革命をもたらした。
しかし、プログラミング言語の特徴、特に特定の構文と訓練データセットでの表現の低いVerilogは、従来のトークン化と復号化アプローチに重大な課題を提起している。
本稿では,Verilogコード生成における投機的復号化の新たな適用法を提案する。
意味のあるコード構造を断片化する標準的なLCMトークン化スキームとは異なり、私たちのアプローチはデコード停止を構文的に重要なトークンと整列させ、モデルのトークン分布の学習を容易にする。
この改良は固有のトークン化の問題に対処し、Verilogの論理構造をより効果的に捕捉するモデルの能力を高める。
実験の結果,提案手法はVerilogコード生成において最大5.05倍の高速化を実現し,従来のトレーニング手法と比較して最大17.19%の関数精度でRTLLM上でのパス@10の関数精度を向上することがわかった。
これらの知見は、特殊プログラミング言語のコード生成における品質ギャップを埋めるための有望なアプローチとして、投機的復号化に注目している。
関連論文リスト
- Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
大規模言語モデルは、自然言語の理解と生成において例外的な能力を示した。
しかし、それらの生成速度は、その復号過程の本質的にシーケンシャルな性質によって制限される。
本稿では,データ駆動方式で実装された新しいデコーディング手法であるLexical Unit Decodingを紹介する。
論文 参考訳(メタデータ) (2024-05-24T04:35:13Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保持するために追加情報を挿入する。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - A Multi-Expert Large Language Model Architecture for Verilog Code Generation [5.159745269633967]
本稿では,Verilog Code Generation (MEV-LLM) のための,革新的なマルチエキスパート LLM アーキテクチャを提案する。
我々のアーキテクチャは、複数のLCMを一意に統合しており、それぞれが、異なるレベルの設計複雑さに対して分類されたデータセットで微調整されている。
実験から得られた実証的な証拠は、構文的に、機能的に正しい生成したVerilog出力の比率において顕著な改善点を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-11T16:58:29Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - Speculative Contrastive Decoding [55.378200871224074]
大規模言語モデル(LLM)は、言語タスクにおいて例外的な性能を示すが、その自動回帰推論は高い計算要求のために制限され、露出バイアスにより準最適である。
投機的復号法とコントラスト的復号法に着想を得て, 単純かつ強力な復号法である投機的コントラスト的復号法(SCD)を導入する。
論文 参考訳(メタデータ) (2023-11-15T14:15:30Z) - Fixing Large Language Models' Specification Misunderstanding for Better Code Generation [13.494822086550604]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - VerilogEval: Evaluating Large Language Models for Verilog Code
Generation [6.88526119890374]
本稿では,VerilogインストラクショナルWebサイトHDLBitsの156問題からなる総合評価データセットを提案する。
評価セットは、単純な組合せ回路から複雑な有限状態マシンまで、様々なVerilogコード生成タスクからなる。
論文 参考訳(メタデータ) (2023-09-14T09:15:34Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
seq2seqタスクは、与えられた入力ソースシーケンスに基づいてターゲットシーケンスを生成することを目的としている。
伝統的に、seq2seqタスクのほとんどはエンコーダによって解決され、ソースシーケンスとデコーダをエンコードしてターゲットテキストを生成する。
最近、デコーダのみの言語モデルをseq2seqタスクに直接適用する、多くの新しいアプローチが出現しました。
論文 参考訳(メタデータ) (2023-04-08T15:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。