Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent
- URL: http://arxiv.org/abs/2310.07166v2
- Date: Tue, 9 Apr 2024 12:40:18 GMT
- Title: Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent
- Authors: Qiyuan Ou, Siwei Wang, Pei Zhang, Sihang Zhou, En Zhu,
- Abstract summary: We propose Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent.
Our proposed model consistently outperforms the state-of-the-art techniques.
- Score: 46.86939432189035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view clustering has attracted growing attention owing to its capabilities of aggregating information from various sources and its promising horizons in public affairs. Up till now, many advanced approaches have been proposed in recent literature. However, there are several ongoing difficulties to be tackled. One common dilemma occurs while attempting to align the features of different views. {Moreover, due to the fact that many existing multi-view clustering algorithms stem from spectral clustering, this results to cubic time complexity w.r.t. the number of dataset. However, we propose Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent(MVSC-HFD) to tackle the discrepancy among views through hierarchical feature descent and project to a common subspace( STAGE 1), which reveals dependency of different views. We further reduce the computational complexity to linear time cost through a unified sampling strategy in the common subspace( STAGE 2), followed by anchor-based subspace clustering to learn the bipartite graph collectively( STAGE 3). }Extensive experimental results on public benchmark datasets demonstrate that our proposed model consistently outperforms the state-of-the-art techniques.
Related papers
- Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Fast Multi-view Clustering via Ensembles: Towards Scalability,
Superiority, and Simplicity [63.85428043085567]
We propose a fast multi-view clustering via ensembles (FastMICE) approach.
The concept of random view groups is presented to capture the versatile view-wise relationships.
FastMICE has almost linear time and space complexity, and is free of dataset-specific tuning.
arXiv Detail & Related papers (2022-03-22T09:51:24Z) - Seeking Commonness and Inconsistencies: A Jointly Smoothed Approach to
Multi-view Subspace Clustering [18.73046476758598]
We propose a jointly smoothed multi-view subspace clustering (JSMC) approach.
Specifically, we incorporate the cross-view commonness and inconsistencies into the subspace representation learning.
Experimental results on a variety of real-world multi-view datasets have confirmed the superiority of the proposed approach.
arXiv Detail & Related papers (2022-03-15T16:52:15Z) - Tensor-based Intrinsic Subspace Representation Learning for Multi-view
Clustering [18.0093330816895]
We propose a novel-based Intrinsic Subspace Representation (TISRL) for multi-view clustering in this paper.
It can be seen that specific information contained in different views is fully investigated by the rank preserving decomposition.
Experimental results on nine common used real-world multi-view datasets illustrate the superiority of TISRL.
arXiv Detail & Related papers (2020-10-19T03:36:18Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Joint Featurewise Weighting and Lobal Structure Learning for Multi-view
Subspace Clustering [3.093890460224435]
Multi-view clustering integrates multiple feature sets, which reveal distinct aspects of the data and provide complementary information to each other.
Most existing multi-view clustering methods only aim to explore the consistency of all views while ignoring the local structure of each view.
We propose a novel multi-view subspace clustering method via simultaneously assigning weights for different features and capturing local information of data in view-specific self-representation feature spaces.
arXiv Detail & Related papers (2020-07-25T01:57:57Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
We propose the agglomerative analysis to approximate the optimal consensus view.
We present Agglomerative Neural Network (ANN) based on Constrained Laplacian Rank to cluster multi-view data directly.
Our evaluations against several state-of-the-art multi-view clustering approaches on four popular datasets show the promising view-consensus analysis ability of ANN.
arXiv Detail & Related papers (2020-05-12T05:39:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.