Tensor-based Intrinsic Subspace Representation Learning for Multi-view
Clustering
- URL: http://arxiv.org/abs/2010.09193v6
- Date: Thu, 12 Nov 2020 08:45:32 GMT
- Title: Tensor-based Intrinsic Subspace Representation Learning for Multi-view
Clustering
- Authors: Qinghai Zheng, Jihua Zhu, Zhongyu Li, Haoyu Tang, Shuangxun Ma
- Abstract summary: We propose a novel-based Intrinsic Subspace Representation (TISRL) for multi-view clustering in this paper.
It can be seen that specific information contained in different views is fully investigated by the rank preserving decomposition.
Experimental results on nine common used real-world multi-view datasets illustrate the superiority of TISRL.
- Score: 18.0093330816895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a hot research topic, many multi-view clustering approaches are proposed
over the past few years. Nevertheless, most existing algorithms merely take the
consensus information among different views into consideration for clustering.
Actually, it may hinder the multi-view clustering performance in real-life
applications, since different views usually contain diverse statistic
properties. To address this problem, we propose a novel Tensor-based Intrinsic
Subspace Representation Learning (TISRL) for multi-view clustering in this
paper. Concretely, the rank preserving decomposition is proposed firstly to
effectively deal with the diverse statistic information contained in different
views. Then, to achieve the intrinsic subspace representation, the
tensor-singular value decomposition based low-rank tensor constraint is also
utilized in our method. It can be seen that specific information contained in
different views is fully investigated by the rank preserving decomposition, and
the high-order correlations of multi-view data are also mined by the low-rank
tensor constraint. The objective function can be optimized by an augmented
Lagrangian multiplier based alternating direction minimization algorithm.
Experimental results on nine common used real-world multi-view datasets
illustrate the superiority of TISRL.
Related papers
- Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent [46.86939432189035]
We propose Anchor-based Multi-view Subspace Clustering with Hierarchical Feature Descent.
Our proposed model consistently outperforms the state-of-the-art techniques.
arXiv Detail & Related papers (2023-10-11T03:29:13Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
arXiv Detail & Related papers (2023-06-08T02:52:24Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Multi-view Clustering with Deep Matrix Factorization and Global Graph
Refinement [37.34296330445708]
Multi-view clustering is an important yet challenging task in machine learning and data mining.
We propose a novel Multi-View Clustering method with Deep semi-NMF and Global Graph Refinement (MVC-DMF-GGR) in this paper.
arXiv Detail & Related papers (2021-05-01T13:40:20Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.