論文の概要: Bidirectional recurrent imputation and abundance estimation of LULC
classes with MODIS multispectral time series and geo-topographic and climatic
data
- arxiv url: http://arxiv.org/abs/2310.07223v3
- Date: Wed, 24 Jan 2024 08:11:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 17:04:02.447185
- Title: Bidirectional recurrent imputation and abundance estimation of LULC
classes with MODIS multispectral time series and geo-topographic and climatic
data
- Title(参考訳): MODISマルチスペクトル時系列と地形・気候データを用いたLULCクラスの双方向再帰計算と存在量推定
- Authors: Jos\'e Rodr\'iguez-Ortega (1 and 2), Rohaifa Khaldi (2), Domingo
Alcaraz-Segura (3), Siham Tabik (1) ((1) Department of Computer Science and
Artificial Intelligence, DaSCI, University of Granada, Granada, Spain, (2)
LifeWatch-ERIC ICT Core, Seville, Spain, (3) Department of Botany, Faculty of
Science, University of Granada, Granada, Spain)
- Abstract要約: スペクトルアンミキシング(SU)は、混合画素を構成的土地利用・土地被覆(LULC)タイプに分解する技術である。
我々の研究はMODIS MS時系列を用いたSUの先駆者であり、エンド・ツー・エンドのDLモデルで不足データに対処する。
実験結果から, 時空間入力データとジオトポグラフィおよび気候情報を統合することで, 混合画素中のLULC量の推定が大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remotely sensed data are dominated by mixed Land Use and Land Cover (LULC)
types. Spectral unmixing (SU) is a key technique that disentangles mixed pixels
into constituent LULC types and their abundance fractions. While existing
studies on Deep Learning (DL) for SU typically focus on single time-step
hyperspectral (HS) or multispectral (MS) data, our work pioneers SU using MODIS
MS time series, addressing missing data with end-to-end DL models. Our approach
enhances a Long-Short Term Memory (LSTM)-based model by incorporating
geographic, topographic (geo-topographic), and climatic ancillary information.
Notably, our method eliminates the need for explicit endmember extraction,
instead learning the input-output relationship between mixed spectra and LULC
abundances through supervised learning. Experimental results demonstrate that
integrating spectral-temporal input data with geo-topographic and climatic
information significantly improves the estimation of LULC abundances in mixed
pixels. To facilitate this study, we curated a novel labeled dataset for
Andalusia (Spain) with monthly MODIS multispectral time series at 460m
resolution for 2013. Named Andalusia MultiSpectral MultiTemporal Unmixing
(Andalusia-MSMTU), this dataset provides pixel-level annotations of LULC
abundances along with ancillary information. The dataset
(https://zenodo.org/records/7752348) and code
(https://github.com/jrodriguezortega/MSMTU) are available to the public.
- Abstract(参考訳): リモートセンシングされたデータは、土地利用と土地被覆(LULC)が混在している。
スペクトルアンミキシング(SU)は、混合画素を成分LULCタイプとその豊富な分画に分解する鍵となる技術である。
SUのためのディープラーニング(DL)の研究は、通常、単一時間ステップのハイパースペクトル(HS)またはマルチスペクトル(MS)データに焦点をあてるが、我々の研究の先駆者はMODIS MS時系列を使用して、エンドツーエンドのDLモデルで欠落したデータに対処する。
提案手法は,地理的,地形的,気候的補助情報を組み込むことにより,長短項記憶(LSTM)に基づくモデルを強化する。
特に, 教師付き学習による混合スペクトルとlulc存在量間の入出力関係を学習する代わりに, 明示的なエンドメンバー抽出の必要性を解消する。
スペクトル-時間入力データと地理地形情報と気候情報の統合により,混合画素におけるlulc存在量の推定が著しく向上することを示す。
本研究は,2013年460m解像度のMODISマルチスペクトル時系列を用いたアンダルシア (Spain) のラベル付きデータセットをキュレートした。
Andalusia MultiSpectral MultiTemporal Unmixing (Andalusia-MSMTU)と名付けられたこのデータセットは、LULCの豊富なピクセルレベルのアノテーションと補助情報を提供する。
データセット(https://zenodo.org/records/7752348)とコード(https://github.com/jrodriguezortega/MSMTU)が一般公開されている。
関連論文リスト
- SpectralEarth: Training Hyperspectral Foundation Models at Scale [47.93167977587301]
ハイパースペクトル基礎モデルの事前学習を目的とした大規模マルチ時間データセットであるSpectralEarthを紹介する。
我々は、最先端の自己教師付き学習(SSL)アルゴリズムを用いて、SpectralEarthの一連の基礎モデルを事前訓練する。
我々は、土地被覆と収穫型マッピングのための4つの下流データセットを構築し、モデル評価のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2024-08-15T22:55:59Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE)は、ディープフェイク検出に特化した新しい埋め込み空間である。
CoDEは、グローバルローカルな類似性をさらに強化することで、対照的な学習を通じて訓練される。
論文 参考訳(メタデータ) (2024-07-29T18:00:10Z) - M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data [1.4053129774629076]
M3LEOはマルチモーダルでマルチラベルの地球観測データセットである。
6つの地理的領域から約17M 4x4 kmのデータチップにまたがる。
論文 参考訳(メタデータ) (2024-06-06T16:30:41Z) - Spectral Image Data Fusion for Multisource Data Augmentation [44.99833362998488]
マルチスペクトル画像やハイパースペクトル画像は、リモートセンシング、天文学的イメージング、精密農業など、さまざまな研究分野で人気が高まっている。
機械学習タスクを実行できる無料データの量は比較的少ない。
スペクトル画像の領域で開発された人工知能モデルは、固定されたスペクトルシグネチャを持つ入力画像を必要とする。
論文 参考訳(メタデータ) (2024-04-05T13:40:18Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From
Multi-Source Optical Imagery [4.9687851703152806]
本稿では,フランス国立地理学林情報研究所 (IGN) の広範なデータセットであるFLAIR (Aerospace ImageRy) のフレンチランドカバーを紹介する。
FLAIRは、地上サンプル距離20cmの高解像度空中画像と、正確な土地被覆分類のための200億以上の個別ラベル付きピクセルを含んでいる。
このデータセットは、光学衛星時系列からの時間的・スペクトル的なデータも統合する。
論文 参考訳(メタデータ) (2023-10-20T07:55:12Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
オープンデータは、通常プライバシーポリシーに従うために、しばしば空間的に集約される。しかし、粗い、異質な集約は、下流のAI/MLシステムに対する一貫性のある学習と統合を複雑にする。
本稿では,空間的注意層をGRU(Gated Recurrent Unit)モデルに統合したSARN(Structurely-Aware Recurrent Network)を提案する。
履歴学習データに制限のあるシナリオでは、ある都市変数に事前学習したモデルを、数百のサンプルのみを用いて、他の都市変数に対して微調整できることを示す。
論文 参考訳(メタデータ) (2023-06-09T21:01:29Z) - PS-ARM: An End-to-End Attention-aware Relation Mixer Network for Person
Search [56.02761592710612]
モジュール・パーソン・サーチのための新しいアテンション・アウェア・リレーション・ミキサー(ARM)を提案する。
私たちのARMモジュールはネイティブで、きめ細かい監督やトポロジカルな仮定に依存していません。
我々のPS-ARMは、両方のデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-10-07T10:04:12Z) - Hyperspectral Image Segmentation based on Graph Processing over
Multilayer Networks [51.15952040322895]
ハイパースペクトル画像(HSI)処理の1つの重要な課題は、スペクトル空間的特徴の抽出である。
M-GSP特徴抽出に基づくHSIセグメンテーションへのいくつかのアプローチを提案する。
HSI処理とスペクトル空間情報抽出におけるM-GSPの強度を実験的に検証した。
論文 参考訳(メタデータ) (2021-11-29T23:28:18Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
我々はX-ModalNetと呼ばれる新しいクロスモーダルディープラーニングフレームワークを提案する。
X-ModalNetは、ネットワークの上部にある高レベルな特徴によって構築されたアップダスタブルグラフ上にラベルを伝搬するため、うまく一般化する。
我々は2つのマルチモーダルリモートセンシングデータセット(HSI-MSIとHSI-SAR)上でX-ModalNetを評価し、いくつかの最先端手法と比較して大幅に改善した。
論文 参考訳(メタデータ) (2020-06-24T15:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。