Adaptive and Gamified Learning Paths with Polyglot and .NET Interactive
- URL: http://arxiv.org/abs/2310.07314v1
- Date: Wed, 11 Oct 2023 09:00:36 GMT
- Title: Adaptive and Gamified Learning Paths with Polyglot and .NET Interactive
- Authors: Tommaso Martorella, Antonio Bucchiarone
- Abstract summary: Growing demand for general and specialized education inside and outside classrooms is at the heart of this rising trend.
In modern, heterogeneous learning environments, the one-size-fits-all approach is proven to be fundamentally flawed.
We aim to define and implement an open, content-agnostic, and platform to design and consume adaptive and gamified learning experiences.
- Score: 3.720289971260197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digital age is changing the role of educators and pushing for a paradigm
shift in the education system as a whole. Growing demand for general and
specialized education inside and outside classrooms is at the heart of this
rising trend. In modern, heterogeneous learning environments, the
one-size-fits-all approach is proven to be fundamentally flawed.
Individualization through adaptivity is, therefore, crucial to nurture
individual potential and address accessibility needs and neurodiversity. By
formalizing a learning framework that takes into account all these different
aspects, we aim to define and implement an open, content-agnostic, and
extensible platform to design and consume adaptive and gamified learning
experiences.
Related papers
- Guiding Empowerment Model: Liberating Neurodiversity in Online Higher Education [2.703906279696349]
We address the equity gap for neurodivergent and situationally limited learners by identifying the spectrum of dynamic factors that impact learning and function.
We suggest that by applying the mode through technology-enabled features such as customizable task management, guided varied content access, and guided multi-modal collaboration, major learning barriers will be removed.
arXiv Detail & Related papers (2024-10-24T16:05:38Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Learning Style Identification Using Semi-Supervised Self-Taught Labeling [0.0]
Education must be adaptable to sudden changes and disruptions caused by events like pandemics, war, and natural disasters related to climate change.
While learning management systems support teachers' productivity and creativity, they typically provide the same content to all learners in a course.
We propose a semi-supervised machine learning approach that detects students' learning styles using a data mining technique.
arXiv Detail & Related papers (2024-02-04T11:56:49Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - Towards Scalable Adaptive Learning with Graph Neural Networks and
Reinforcement Learning [0.0]
We introduce a flexible and scalable approach towards the problem of learning path personalization.
Our model is a sequential recommender system based on a graph neural network.
Our results demonstrate that it can learn to make good recommendations in the small-data regime.
arXiv Detail & Related papers (2023-05-10T18:16:04Z) - Dynamic Diagnosis of the Progress and Shortcomings of Student Learning
using Machine Learning based on Cognitive, Social, and Emotional Features [0.06999740786886534]
Student diversity can be challenging as it adds variability in the way in which students learn and progress over time.
A single teaching approach is likely to be ineffective and result in students not meeting their potential.
This paper discusses a novel methodology based on data analytics and Machine Learning to measure and causally diagnose the progress and shortcomings of student learning.
arXiv Detail & Related papers (2022-04-13T21:14:58Z) - A Network Science Perspective to Personalized Learning [0.0]
We examine how learning objectives can be achieved through a learning platform that offers content choices and multiple modalities of engagement to support self-paced learning.
This framework brings the attention to learning experiences, rather than teaching experiences, by providing the learner engagement and content choices supported by a network of knowledge.
arXiv Detail & Related papers (2021-11-02T01:50:01Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Learning with AMIGo: Adversarially Motivated Intrinsic Goals [63.680207855344875]
AMIGo is a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals.
We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks.
arXiv Detail & Related papers (2020-06-22T10:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.