A Network Science Perspective to Personalized Learning
- URL: http://arxiv.org/abs/2111.01321v1
- Date: Tue, 2 Nov 2021 01:50:01 GMT
- Title: A Network Science Perspective to Personalized Learning
- Authors: Ralucca Gera, Akrati Saxena, D'Marie Bartolf, Simona Tick
- Abstract summary: We examine how learning objectives can be achieved through a learning platform that offers content choices and multiple modalities of engagement to support self-paced learning.
This framework brings the attention to learning experiences, rather than teaching experiences, by providing the learner engagement and content choices supported by a network of knowledge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modern educational ecosystem is not one-size fits all. Scholars are
accustomed to personalization in their everyday life and expect the same from
education systems. Additionally, the COVID-19 pandemic placed us all in an
acute teaching and learning laboratory experimentation which now creates
expectations of self-paced learning and interactions with focused educational
materials. Consequently, we examine how learning objectives can be achieved
through a learning platform that offers content choices and multiple modalities
of engagement to support self-paced learning, and propose an approach to
personalized education based on network science. This framework brings the
attention to learning experiences, rather than teaching experiences, by
providing the learner engagement and content choices supported by a network of
knowledge, based on and driven by individual skills and goals. We conclude with
a discussion of a prototype of such a learning platform, called CHUNK Learning.
Related papers
- Education in the Era of Neurosymbolic AI [0.6468510459310326]
We propose a system that leverages the unique affordances of pedagogical agents as critical components of a hybrid NAI architecture.
We conclude that education in the era of NAI will make learning more accessible, equitable, and aligned with real-world skills.
arXiv Detail & Related papers (2024-11-16T19:18:39Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - A Comprehensive Exploration of Personalized Learning in Smart Education:
From Student Modeling to Personalized Recommendations [19.064610936977402]
China, the United States, the European Union, and others have put forward the importance of personalized learning.
This review provides a comprehensive analysis of the current situation of personalized learning and its key role in education.
arXiv Detail & Related papers (2024-01-15T08:49:25Z) - Integrating Competency-Based Education in Interactive Learning Systems [1.0052074659955383]
This paper describes how to make Artemis capable of competency-based education.
We show how instructors can define relations between competencies to create a competency relation graph.
We present the results of a user study regarding the usability of the newly designed competency visualization.
arXiv Detail & Related papers (2023-08-25T15:11:53Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
Personalization and active learning are key aspects to successful learning.
We run a comparative head-to-head study of learning outcomes for two popular online learning platforms.
arXiv Detail & Related papers (2021-04-15T20:40:24Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Online Structured Meta-learning [137.48138166279313]
Current online meta-learning algorithms are limited to learn a globally-shared meta-learner.
We propose an online structured meta-learning (OSML) framework to overcome this limitation.
Experiments on three datasets demonstrate the effectiveness and interpretability of our proposed framework.
arXiv Detail & Related papers (2020-10-22T09:10:31Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
We propose Point Adversarial Self Mining (PASM) to improve the recognition accuracy in facial expression recognition.
PASM uses a point adversarial attack method and a trained teacher network to locate the most informative position related to the target task.
The adaptive learning materials generation and teacher/student update can be conducted more than one time, improving the network capability iteratively.
arXiv Detail & Related papers (2020-08-26T06:39:24Z) - Key principles for workforce upskilling via online learning: a learning
analytics study of a professional course in additive manufacturing [2.014343808433054]
This study combines learning objective analysis and visual learning analytics to examine the relationships among learning trajectories, engagement, and performance.
The study also emphasizes broader strategies for course designers and instructors to align course assignments, learning objectives, and assessment measures with learner needs and interests.
arXiv Detail & Related papers (2020-08-15T00:30:56Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
We propose a competence-aware curriculum for visual concept learning in a question-answering manner.
We design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process.
Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-07-03T05:08:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.