論文の概要: From Supervised to Generative: A Novel Paradigm for Tabular Deep Learning with Large Language Models
- arxiv url: http://arxiv.org/abs/2310.07338v4
- Date: Thu, 11 Jul 2024 04:09:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 12:15:14.337257
- Title: From Supervised to Generative: A Novel Paradigm for Tabular Deep Learning with Large Language Models
- Title(参考訳): 監督から生成へ:大規模言語モデルを用いたタブラルディープラーニングのための新しいパラダイム
- Authors: Xumeng Wen, Han Zhang, Shun Zheng, Wei Xu, Jiang Bian,
- Abstract要約: GTL(Generative Tabular Learning)は、大規模言語モデル(LLM)の高度な機能を統合する新しいフレームワークである。
我々の実証的研究は、GTLのスケーリングの振る舞いを厳格に分析し、384の公開データセットにまたがる。
GTL-LLaMA-2モデルは、多くの分類および回帰タスクにまたがる優れたゼロショットおよびインコンテキスト学習能力を示す。
- 参考スコア(独自算出の注目度): 18.219485459836285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tabular data is foundational to predictive modeling in various crucial industries, including healthcare, finance, retail, sustainability, etc. Despite the progress made in specialized models, there is an increasing demand for universal models that can transfer knowledge, generalize from limited data, and follow human instructions. These are challenges that current tabular deep learning approaches have not fully tackled. Here we introduce Generative Tabular Learning (GTL), a novel framework that integrates the advanced functionalities of large language models (LLMs)-such as prompt-based zero-shot generalization and in-context learning-into tabular deep learning. GTL capitalizes on the pre-training of LLMs on diverse tabular data, enhancing their understanding of domain-specific knowledge, numerical sequences, and statistical dependencies critical for accurate predictions. Our empirical study spans 384 public datasets, rigorously analyzing GTL's convergence and scaling behaviors and assessing the impact of varied data templates. The GTL-enhanced LLaMA-2 model demonstrates superior zero-shot and in-context learning capabilities across numerous classification and regression tasks. Notably, it achieves this without fine-tuning, outperforming traditional methods and rivaling state-of-the-art models like GPT-4 in certain cases. Through GTL, we not only foster a deeper integration of LLMs' sophisticated abilities into tabular data comprehension and application but also offer a new training resource and a test bed for LLMs to enhance their ability to comprehend tabular data. To facilitate reproducible research, we release our code, data, and model checkpoints at https://github.com/microsoft/Industrial-Foundation-Models.
- Abstract(参考訳): タブラルデータは、医療、金融、小売、サステナビリティなど、さまざまな重要な産業における予測モデリングの基礎となっている。
専門モデルにおける進歩にもかかわらず、知識を伝達し、限られたデータから一般化し、人間の指示に従うことができる普遍モデルへの需要が高まっている。
これらは、現在の表形式のディープラーニングアプローチが完全には取り組まなかった課題である。
本稿では,大規模言語モデル(LLM)の高度な機能を統合する新しいフレームワークであるジェネレーティブタブラルラーニング(GTL)を紹介する。
GTLは、様々な表形式のデータに基づくLLMの事前学習に重きを置いて、ドメイン固有の知識、数値シーケンス、および正確な予測に不可欠な統計的依存関係の理解を高めている。
我々の実証研究は、GTLの収束とスケーリングの振る舞いを厳格に分析し、さまざまなデータテンプレートの影響を評価する、384の公開データセットにまたがる。
GTL強化LLaMA-2モデルは、多くの分類および回帰タスクにまたがる優れたゼロショットおよびインコンテキスト学習能力を示す。
特に、GPT-4のような最先端のモデルに対抗して、微調整や従来の手法よりも優れたパフォーマンスを実現している。
GTLを通じて,LLMの高度な能力を表型データ理解と応用に深く統合するだけでなく,表型データを理解する能力を高めるために,新たなトレーニングリソースとテストベッドを提供する。
再現可能な研究を容易にするため、私たちはhttps://github.com/microsoft/Industrial-Foundation-Modelsでコード、データ、モデルチェックポイントをリリースします。
関連論文リスト
- Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
大規模言語モデルにおける一般化と記憶の相互作用について検討する。
各種のオープンソースLLMとその事前学習コーパスを用いて、モデルのサイズが大きくなるにつれて、タスク関連$n$-gramのペアデータの重要性が増すのを観察する。
その結果,LLMの能力は,十分なタスク関連事前学習データによる記憶と一般化の微妙なバランスから生じるという仮説を支持した。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - Towards Lifelong Learning of Large Language Models: A Survey [20.0936011355535]
この調査は、生涯学習の洗練された風景を掘り下げ、戦略を2つの主要なグループ、内的知識と内的知識に分類する。
本研究では,実世界のアプリケーションにおける大規模言語モデルの適応性,信頼性,全体的な性能を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-06-10T15:46:25Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science [17.910306140400046]
この研究は、これらの予測タスクにLarge Language Models (LLM)を適用する試みである。
本研究の目的は,Llama-2 の大規模学習を行う上で,注釈付きテーブルの包括的コーパスをコンパイルすることで,このギャップを緩和することにある。
論文 参考訳(メタデータ) (2024-03-29T14:41:21Z) - Large Language Models for Data Annotation: A Survey [49.8318827245266]
LLM(Advanced Large Language Models)の出現は、データアノテーションの複雑なプロセスを自動化する前例のない機会を提供する。
この調査には、LLMが注釈付けできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションにLLMを使用する際の主な課題と制限に関する詳細な議論が含まれている。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。