RLaGA: A Reinforcement Learning Augmented Genetic Algorithm For
Searching Real and Diverse Marker-Based Landing Violations
- URL: http://arxiv.org/abs/2310.07378v2
- Date: Thu, 12 Oct 2023 00:49:09 GMT
- Title: RLaGA: A Reinforcement Learning Augmented Genetic Algorithm For
Searching Real and Diverse Marker-Based Landing Violations
- Authors: Linfeng Liang, Yao Deng, Kye Morton, Valtteri Kallinen, Alice James,
Avishkar Seth, Endrowednes Kuantama, Subhas Mukhopadhyay, Richard Han, Xi
Zheng
- Abstract summary: It's important to fully test auto-landing systems before deploying them in the real-world to ensure safety.
This paper proposes RLaGA, a reinforcement learning (RL) augmented search-based testing framework.
Our method generates up to 22.19% more violation cases and nearly doubles the diversity of generated violation cases.
- Score: 0.7709288517758135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated landing for Unmanned Aerial Vehicles (UAVs), like multirotor
drones, requires intricate software encompassing control algorithms, obstacle
avoidance, and machine vision, especially when landing markers assist. Failed
landings can lead to significant costs from damaged drones or payloads and the
time spent seeking alternative landing solutions. Therefore, it's important to
fully test auto-landing systems through simulations before deploying them in
the real-world to ensure safety. This paper proposes RLaGA, a reinforcement
learning (RL) augmented search-based testing framework, which constructs
diverse and real marker-based landing cases that involve safety violations.
Specifically, RLaGA introduces a genetic algorithm (GA) to conservatively
search for diverse static environment configurations offline and RL to
aggressively manipulate dynamic objects' trajectories online to find potential
vulnerabilities in the target deployment environment. Quantitative results
reveal that our method generates up to 22.19% more violation cases and nearly
doubles the diversity of generated violation cases compared to baseline
methods. Qualitatively, our method can discover those corner cases which would
be missed by state-of-the-art algorithms. We demonstrate that select types of
these corner cases can be confirmed via real-world testing with drones in the
field.
Related papers
- MARL-OT: Multi-Agent Reinforcement Learning Guided Online Fuzzing to Detect Safety Violation in Autonomous Driving Systems [1.1677228160050082]
This paper introduces MARL-OT, a scalable framework that leverages MARL to detect safety violations of Autonomous Driving Systems (ADSs)
MARL-OT employs MARL for high-level guidance, triggering various dangerous scenarios for the rule-based online fuzzer to explore potential safety violations of ADSs.
Our approach improves the detected safety violation rate by up to 136.2% compared to the state-of-the-art (SOTA) testing technique.
arXiv Detail & Related papers (2025-01-24T12:34:04Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - PAFOT: A Position-Based Approach for Finding Optimal Tests of Autonomous Vehicles [4.243926243206826]
This paper proposes PAFOT, a position-based approach testing framework.
PAFOT generates adversarial driving scenarios to expose safety violations of Automated Driving Systems.
Experiments show PAFOT can effectively generate safety-critical scenarios to crash ADSs and is able to find collisions in a short simulation time.
arXiv Detail & Related papers (2024-05-06T10:04:40Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT) is a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world.
DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields.
It can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline.
arXiv Detail & Related papers (2023-10-13T12:22:31Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
Self-driving cars must generalize to the end-user's environment to operate reliably.
One potential solution is to leverage unlabeled data collected from the end-users' environments.
There is no reliable signal in the target domain to supervise the adaptation process.
We show that this simple additional assumption is sufficient to obtain a potent signal that allows us to perform iterative self-training of 3D object detectors on the target domain.
arXiv Detail & Related papers (2023-03-27T15:07:55Z) - Analyzing Robustness of the Deep Reinforcement Learning Algorithm in
Ramp Metering Applications Considering False Data Injection Attack and
Defense [0.0]
Ramp metering is the act of controlling on-going vehicles to the highway mainlines.
Deep Q-Learning algorithm uses only loop detectors information as inputs in this study.
Model can be applied to almost any ramp metering sites regardless of the road geometries and layouts.
arXiv Detail & Related papers (2023-01-28T00:40:46Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
Validation puts the autonomous vehicle system to the test in scenarios or situations that the system would likely encounter in everyday driving.
We propose using reinforcement learning (RL) to generate failure examples and unexpected traffic situations for the AV software implementation.
arXiv Detail & Related papers (2020-05-22T19:00:38Z) - Search-based Test-Case Generation by Monitoring Responsibility Safety
Rules [2.1270496914042996]
We propose a method for screening and classifying simulation-based driving test data to be used for training and testing controllers.
Our framework is distributed with the publicly available S-TALIRO and Sim-ATAV tools.
arXiv Detail & Related papers (2020-04-25T10:10:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.