Implementing 2-qubit pseudo-telepathy games on noisy intermediate scale
quantum computers
- URL: http://arxiv.org/abs/2310.07441v1
- Date: Wed, 11 Oct 2023 12:47:12 GMT
- Title: Implementing 2-qubit pseudo-telepathy games on noisy intermediate scale
quantum computers
- Authors: Colm Kelleher, Mohammad Roomy, Fr\'ed\'eric Holweck
- Abstract summary: Mermin-Peres like proofs of quantum contextuality can furnish non-local games with a guaranteed quantum strategy.
We show that the quantumness of these games are almost revealed when we play them on the IBM Quantum Experience.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is known that Mermin-Peres like proofs of quantum contextuality can
furnish non-local games with a guaranteed quantum strategy, when classically no
such guarantee can exist. This phenomenon, also called quantum
pseudo-telepathy, has been studied in the case of the so-called Mermin Magic
square game. In this paper we review in detail two different ways of
implementing on a quantum computer such a game and propose a new Doily game
based on the geometry of 2-qubit Pauli group. We show that the quantumness of
these games are almost revealed when we play them on the IBM Quantum
Experience, however the inherent noise in the available quantum machines
prevents a full demonstration of the non-classical aspects.
Related papers
- A bound on the quantum value of all compiled nonlocal games [49.32403970784162]
A cryptographic compiler converts any nonlocal game into an interactive protocol with a single computationally bounded prover.
We establish a quantum soundness result for all compiled two-player nonlocal games.
arXiv Detail & Related papers (2024-08-13T08:11:56Z) - Exploiting Finite Geometries for Better Quantum Advantages in Mermin-Like Games [0.0]
Quantum games embody non-intuitive consequences of quantum phenomena, such as entanglement and contextuality.
In this paper we look at the geometric structure behind such classical strategies, and borrow ideas from the geometry of symplectic polar spaces to maximise this quantum advantage.
arXiv Detail & Related papers (2024-03-14T15:56:43Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Experimental Demonstration of Quantum Pseudotelepathy [8.366359388178546]
We report a faithful experimental demonstration of quantum pseudotelepathy via playing the non-local version of Mermin-Peres magic square game.
We adopt the hyperentanglement scheme and prepare photon pairs entangled in both the polarization and the orbital angular momentum degrees of freedom.
Our results show that quantum players can simultaneously win all the queries over any classical strategy.
arXiv Detail & Related papers (2022-06-24T02:35:55Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Playing quantum nonlocal games with six noisy qubits on the cloud [0.0]
Nonlocal games are extensions of Bell inequalities, aimed at demonstrating quantum advantage.
We consider the minimal implementation of the nonlocal game proposed in Science 362, 308.
We test this game by preparing a 6-qubit cluster state using quantum computers on the cloud by IBM, Ionq, and Honeywell.
arXiv Detail & Related papers (2021-05-11T18:00:08Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Surpassing the Classical Limit in Magic Square Game with Distant Quantum
Dots Coupled to Optical Cavities [0.0]
We propose an experimental setup for quantum computation with quantum dots inside optical cavities.
Considering various physical imperfections of our setup, we first show that the MSG can be implemented with the current technology.
We show that our work gives rise to a new version of the game. That is, if the referee has information on the physical realization and strategy of the players, he can bias the game through filtered randomness and increase his winning probability.
arXiv Detail & Related papers (2020-11-03T05:45:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.